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Strickland et al. (2013) compared exposure concentration estimates for PMz s, PMio, SO4*7, NOs~, NH4*,

EC, and OC among different methods, including fixed-site monitors, population-weighted averages of the

(1) fixed-site monitors, (2) unweighted averages, (3) population-weighted averages, (4) area averages, and
(5) a spatiotemporal model that used the pollutants” spatial and temporal autocorrelation structures to
estimate exposure concentrations. Taking the spatiotemporal model as a reference, Goldman et al. (2012)

found the fixed-site monitor had greater bias in the exposure metric compared with the averaging
methods, and that bias increased for more-spatially-variable EC and OC compared with PM,s. These
comparisons highlight differences among the methods in their ability to capture variability of exposures
or exposure concentrations among study participants. The importance of capturing such variability also

depends on the variability of the PM size cut or components.

Comparison of exposure concentration surfaces involving satellite observations have focused on
spatial resolutions appropriate for different exposure concentration estimation techniques. Lee et al.
estimated using satellite detection and kriging with PM, s concentration measurements from fixed-site

monitors using 6 years of data. Lee et al. (2012b) compared the kriged or remotely sensed data with the

surface measurements over distances ranging from 7.6 km to 106.0 km using mean squared error (MSE),
mean error, mean absolute error (MAE), Pearson correlation, and Spearman correlation. Lee et al.
(2012b} estimated that kriging provided superior exposure concentration estimates when distances from
the kriged estimate to the fixed-site monitor were smaller than 98 km while satellite detection provided
superior exposure concentration estimates when distances from the remotely-sensed concentration

centroid to the fixed-site monitor exceeded 98 km. Jerrett et al. (2016) compared remotely sensed PM: s

exposure concentration surfaces estimated from input by three satellite systems, downscaled CMAQ
exposure concentration estimates, a spatiotemporal exposure concentration surface, a LUR model, and a
combined LUR-kriging model. The mean and median PM; 5 exposure concentrations were similar across
methods (range of means: 11.4 to 12.2 pg/m’), but the LUR models and one spatiotemporal model
(geographically-weighted regression) produced higher variability than the other methods (IQRs range
from 3.6 to 5.7 ug/m’).

Epidemiologic study design influences the relevance and utility of exposure concentration
estimation methods. Methods with high temporal resolution are preferable for short-term exposure studies
even if spatial resolution is low, assuming the temporal variability at the site of data collection does not
vary substantially across the study arca. Fixed-site monitors, with temporal variability matching that of
the health dataset, may be appropriate for this case, especially for PM, s concentration, which tends to be
less spatially variable than concentrations of PMio-25 or UFP. Methods with high spatial resolution are
preferable for long-term exposure studies where spatial contrasts are important. Methods that merge data
from several sources, such as hybrid methods drawing from a combination of land use variables, satellite
observations, CTM model output, and surface measurements, are designed to produce more spatial
variability in the PM concentration surface. However, satellite data and CTM model output are not as
readily available for PMio 25 and UFP as they are for PM, 5. Table 3-5 summarizes various exposure
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concentration estimation methods used in PM epidemiologic studies, appropriate applications, and
associated errors and uncertainties. In general, the methods listed in Table 3-5 that model spatial
variability more accurately are often used in studies of health effects from long-term PM exposure,
because uncertainties in spatial variability will have more of an influence on effect estimates from
long-term exposure studies. Similarly, the methods that capture temporal variability are typically used in
short-term PM exposure studies, because uncertainties in temporal variability will have more of an
influence on effect estimates from short-term exposure studies.
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Table 3-5

epidemiologic studies, and related errors and uncertainties.

Summary of exposure or exposure concentration estimation methods, their typical use in PM

Exposure
Concentration

Epidemiologic

Assignment Method Description Application Strengths Limitations Exposure Errors

Measurement Methods

Fixed-site monitor Typically, the nearest  Short-term Ambient PM Non-FRM and non-FEM Correlation between outdoor PM concentrations
[Section 3.3.1.1; monitor to a receptor  exposure concentration optical instruments cannot  proximal to the receptors and ambient PM
Section 2.4.1, U.S. location; monitor type  studies: measurements be calibrated to ambient concentration measurements typically

EPA (2009b)] varies with particle surrogate for  undergo rigorous conditions, based on decreases with increasing distance from the

size:

PM2s: A FRM or FEM
monitor located at a
fixed location to

ambient PM
exposure
concentration
of a population

quality assurance

differences in size
distributions and

composition of calibration
particles (e.g., Arizona road

monitor, especially for PM1o-25 and UFP,
potentially leading simultaneously to decreased
precision and to bias towards the null, as
increased noise drives the slope towards zero;

measure ambient PM  within a city. dust) and ambient PM,; errors in PM1o-25 concentrations related to
concentration; Long-term measurements of ambient  different flow rates used in PM1o and PM2s
PMio-25. A exposure PM concentration made at  monitors for the differencing methods; errors in
dichotomeus FRM or ¢t dies: a fixed location may differ ~ PM1o-25 concentrations due to differences in
FEM monitor located surrogate for from an exposed locations of PMio and PM2s monitors when the
at a fixed location to ambient PM individual's true exposure instruments are not collocated. Potential for
measure ambient PM exposure concentration, and no bias if ambient PM concentration at a receptor
concentration, concentration spatial variation is location is higher or lower than the ambient PM
collocated PMioand 5 compare assumed; smaller particles  concentration measured at the monitor,

PMzs monitors used  popylations (e.g., UFP)are more especially for PM1o-25 and UFP; potential for

to calculate
concentrations by
differencing for a
given location, or
non-collocated PM1o
and PMas monitors
used to calculate
concentrations by
differencing across a
city or county; UFP:
typically, a CPC to
measure particle

within a city or
among multiple
cities.

susceptible to evaporative

losses.

imprecision from assumption of constant PM
concentration within some radius of the
monitor, especially for PMio-25 and UFP; errors
in PM1o-25 concentrations related to different
flow rates used in PM+o and PM2s monitors for
the differencing methods; errors in PM1o-25
concentrations due to differences in locations of
PMio and PM2s monitors when the instruments
are not collocated.

number concentration.
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Table 3-5 (Continued): Summary of exposure or exposure concentration estimation methods, their typical use in
PM epidemiologic studies, and related errors and uncertainties.

Exposure
Concentration
Assignment Method

Description

Epidemiologic
Application

Strengths

Limitations

Exposure Errors

Microenvironmental
monitor
(Section 3.3.1.2)

Typically located in an
outdoor or indoor
microenvironment to
measure ambient PM
concentration; PMas:
A FRM or FEM
monitor located at a
fixed location to
measure ambient PM
concentration;

PMio-25. A
dichotomous FRM or
FEM monitor located
at a fixed location to
measure ambient PM
concentration, or
collocated PM1o and
PM2s monitors used
to calculate
concentrations by
differencing for a
given location;

UFP: typically, a CPC
to measure particle
number concentration

Panel studies:
PM exposure
(e.g., personal
or residential
samples)
within a
geographic
area

Ambient PM
concentration
measurements
undergo rigorous
quality assurance

Non-FRM and non-FEM
optical instruments cannot
be calibrated to ambient
conditions, based on
differences in size
distributions and
composition of calibration
particles (e.g., Arizona road
dust) and ambient PM,;
instrument expense may
make it difficult to perform
sampling simultaneously in
multiple environments.

Nonambient PM exposure sampling may lead

to bias if appropriate statistical methods are not

used for handling biased data.
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Table 3-5 (Continued): Summary of exposure or exposure concentration estimation methods, their typical use in

PM epidemiologic studies, and related errors and uncertainties.

Exposure
Concentration
Assignment Method

Description

Epidemiologic
Application

Strengths

Limitations

Exposure Errors

Active personal
exposure monitor
(Section 3.3.1.2)

Air is pulled through a
pump and sampled for
ambient PM
concentration;

PMas or PM1g-25: air
is typically directed
through a collection
filter on an impaction
plate or past an
optical detector,
upstream hardware
(e.g., cyclone) may be
used for separating
PM by specific size
fractions;

UFP: typically, a CPC
to measure particle
number concentration;
for BC, PM is typically
measured with an
aethalometer.

Panel studies:
PM exposure
(e.g., personal
or residential
samples)
within a
geographic
area

PM and/or BC
concentrations are
obtained at the site
of the exposed
person

Non-FRM and non-FEM
optical instruments cannot
be calibrated to ambient
conditions, based on
differences in size
distributions and
composition of calibration
particles (e.g., Arizona road
dust) and ambient PM,;
some monitors can detect a
minimum particle size of
0.1 pm and a few others
can detect 0.25 uym, but the
majority detect over the
entire fine PM range; many
monitors are noisy.

Nonambient PM exposure sampling may lead
to bias if appropriate statistical methods are not
used for handling biased data.

Passive personal
exposure monitor
(Section 3.3.1.2)

PM is captured on a
treated substrate via
passive exposure for
a time period to
measure a personal or
area sample, and the
substrate is analyzed
by SEM,;

concentration is
calculated based on a
model of passive
diffusion flux for PMas,
PMio-25, or UFP.

Panel studies:
ambient PM
exposure
within a city or
among multiple
cities

PM concentrations
are obtained at the
site of the exposed
person

Long duration integrated
sampling time (e.g., 7 days)
does not allow for
time-series analysis;
diffusion-related losses to
the passive sampler
hardware have the potential
to bias the concentration
estimation based both on
reduced particle counts and
overestimation of flux to the
sampling substrate.

Nonambient PM exposure sampling may lead

to bias.
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Table 3-5 (Continued): Summary of exposure or exposure concentration estimation methods, their typical use in
PM epidemiologic studies, and related errors and uncertainties.

Exposure
Concentration Epidemiologic

Assignment Method Description Application Strengths Limitations Exposure Errors

Modeling Methods

Data averaging Averaging across Short-term Ambient PM Non-FRM and non-FEM Correlation between outdoor PM concentrations

(Section 3.3.2.1) multiple monitors exposure concentration optical instruments cannot  proximal to the receptors and ambient PM
during the same time  studies: measurements be calibrated to ambient concentration measurements typically
window and withina  surrogate for  undergo rigorous conditions, based on decreases with increasing distance from the
geographical area ambient PM quality assurance; differences in size monitor, especially for PM1o-25 and UFP,
such as a city or exposure averaging scheme  distributions and potentially leading simultaneously to decreased
county, typically using concentration  designed for composition of calibration precision and to bias towards the null, as
fixed-site monitoring  of a population population ortrend particles (e.g., Arizona road increased noise drives the slope towards zero.
data within a city of interest dust) and ambient PM,;

measurements of ambient
PM concentration made at
a fixed location may differ
from an exposed
individual's true exposure
concentration, and spatial
variation is assumed to be
well-represented by the
averaging scheme.

Spatial averaging Long-term Potential for bias if ambient PM concentration
(area averaging, exposure at a receptor location is higher or lower than the
population-weighted  studies: spatial average, especially for PM1o-25 and
averaging), typically surrogate for UFP; potential for imprecision from assumption
using fixed-site ambient PM of constant PM concentration within some
monitoring data exposure geographic area, especially for PM1o-25 and

concentration, UFP.

usually within a

city or

geographic

region
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Table 3-5 (Continued): Summary of exposure or exposure concentration estimation methods, their typical use in
PM epidemiologic studies, and related errors and uncertainties.

Exposure
Concentration

Epidemiologic

Assignment Method Description Application Strengths Limitations Exposure Errors
Inverse distance Measured ambient Long-term High spatial Over-smoothing based on  Potential for negative bias if ambient PM
weighting PM concentrations are exposure resolution assumption that ambient sources are not captured or PM concentration
(Section 3.3.2.2) interpolated to studies: PM concentration is is overly smoothed; potential for positive bias if
estimate ambient PM  surrogate for constant for a given PM deposition or other loss processes;
concentration ambient PM distance from the source or potential for imprecision from overly smoothed
surfaces across exposure based on smoothing PM concentration.
regions; IDW uses an  concentration, function between monitors
inverse function of usually within a (which is more of an issue
distance to monitors  city or for PMig-25 and UFP).
geographic
region
Kriging Measured ambient Long-term High spatial Over-smoothing is possible Potential for negative bias if ambient PM
(Section 3.3.2.2) PM concentrations are exposure resolution based on smoothing sources are not captured or PM concentration
interpolated to studies: function between monitors  is overly smoothed; potential for positive bias if
estimate ambient PM  surrogate for (which is more of an issue  PM deposition or other loss processes;
concentration ambient PM for PMio-25 and UFP). potential for imprecision from overly smoothed
surfaces across exposure PM concentration.
regions concentration,
usually within a
city or
geographic
region
Land use regression Measured ambient Long-term High spatial Does not account for Potential for bias if grid is not finely resolved, if
(Section 3.3.2.3) PM concentrations are exposure resolution emission rates, dispersion, the model is misspecified, or if the model is
regressed on local studies: or atmospheric chemistry applied to a location different from where the
variables (e.g., land surrogate for and may account for model was fit.
use factors); the ambient PM meteorology only in terms
resulting model is exposure of wind speed and wind

used to estimate
ambient PM

concentration,
usually across

direction, depending on
model formulation; has

concentrations at a city but limited generalizability to
specific locations sometimes other locations;
among multiple uncertainties are highest
cities where training monitors are

sparse.
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Table 3-5 (Continued): Summary of exposure or exposure concentration estimation methods, their typical use in
PM epidemiologic studies, and related errors and uncertainties.

Exposure
Concentration

Assignment Method

Description

Epidemiologic

Application Strengths

Limitations

Exposure Errors

Spatiotemporal
model
(Section 3.3.2.3)

Measured ambient

PM concentrations are
modeled by a spatial

average, spatially-
varying covariates,

and a spatiotemporal
residual; the resulting

model is used to

estimate ambient PM

concentrations at
specific locations

Short-term and High spatial
long-term resolution
exposure

studies:

surrogate for

ambient PM

exposure

concentration,

usually across

a city but

sometimes

among multiple

cities

Does not account for
emission rates, dispersion,
or atmospheric chemistry
and may account for
meteorology only in terms
of wind speed and wind
direction, depending on
model formulation; has
limited generalizability to
other locations;
uncertainties are highest
where training monitors are
sparse.

Potential for bias if grid is not finely resolved, if
the model is misspecified, or if the model is
applied to a location different from where the
model was fit.

Chemical transport

Grid-based ambient

Short-term and Strengths include

Limited grid cell resolution

Potential for bias when grid cells are too large

model PM concentrations are long-term accounting for (i.e., grid cell length scale is to capture spatial variability of ambient PM
(Section 3,3.24.1) estimated from exposure emission rates, typically 4-36 km), spatial  exposures, especially for PM1o-25; bias in PM
emissions, studies: mixing height, smoothing of local PM mass concentration and PM components
meteorology, and surrogate for  atmospheric emissions sources; UFP related to underestimation of BC and OC.
atmospheric chemistry ambient PM stability, not typically modeled;
and physics exposure meteorology, temporal emission
concentration, atmospheric allocations (e.g., by hour of
sometimes chemistry, and weekday, by month, etc.)
within a city but complex terrain are generally the same
more typically over time.
across a larger
region
Dispersion model Ambient PM Short-term and High spatial and Very limited representation Potential for bias where the dispersion model

(Section 3.3.2.4.2)

concentrations at

specific locations are

estimated from
emissions,
meteorology, and

atmospheric physics

long-term temporal
exposure resolution,
studies: accounts for
surrogate for  atmospheric
ambient PM physics from local
exposure emission sources

concentration
within a city or
geographic
region

of atmospheric chemistry or
background PM
concentrations; input
emissions data are
sometimes not available
(e.g., roads where vehicle
counts are not measured).

does not capture boundary conditions and
resulting fluid dynamics well (e.g., in large cities
with urban topography affecting dispersion).
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Table 3-5 (Continued): Summary of exposure or exposure concentration estimation methods, their typical use in
PM epidemiologic studies, and related errors and uncertainties.

Exposure
Concentration Epidemiologic
Assignment Method Description Application Strengths Limitations Exposure Errors

Hybrid approaches Grid-based ambient Short-term and Strengths include  Limited grid cell resolution  Although there is the potential for bias when

(Section 3.3.2.4.3) PM concentrations are long-term accounting for (i.e., grid cell length scale is grid cells are too large to capture spatial
estimated from exposure emission rates, typically 4-36 km), variability of ambient PM exposures (especially
emissions, studies: mixing height, resource-intensive; spatial  for PMio-25; bias in PM mass concentration and
meteorology, and surrogate for  atmospheric smoothing of local PM PM components related to underestimation of
atmospheric chemistry ambient PM stability, emissions sources; UFP BC and OC), fusing model results with
and physics and bias  exposure meteorology, not typically modeled. monitoring data helps to minimize exposure
corrected based on concentration, atmospheric errors.
monitoring data sometimes chemistry, and

within a city but complex terrain;
more typically  bias correction
across a larger improves model

region results, particularly
where biases are
large
Microenvironmental  Estimates distributions Short-term and Accounts for Models simulate individuals Potential for bias when the modeled
modeling of long-term variability of PM and their exposures; they  distributions of ambient PM concentration,
[e.g., APEX, SHEDS micro-environmental  exposure exposures across  do not model actual indoor:outdoor pollutant ratios, and time-activity
(Section 3.3.4)] PM concentrations, studies; panel large populations, individuals but simulated patterns differ from the true distributions.
exposures, and doses studies accounts for representative individuals
for populations different based on the population
{(e.g., census tracts) concentrations in being modeled.
based on air quality different
data, demographic microenvironments,
variables, and activity accounts for
patterns location-activity
information
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Table 3-5 (Continued): Summary of exposure or exposure concentration estimation methods, their typical use in
PM epidemiologic studies, and related errors and uncertainties.

Exposure
Concentration Epidemiologic

Assignment Method Description Application Strengths Limitations Exposure Errors

Satellite-based Grid-based ambient Long-term Strengths include  Limited temporal resolution Although there is the potential for bias when

methods PM concentrations are exposure bias correction (i.e., based on a daily grid cells are too large to capture spatial

(Section 3.3.3) estimated from studies: improves model observation); assume AOD  variability of ambient PM exposures (especially
emissions, surrogate for  results, particularly is representative of for PMio-25, bias in PM mass concentration and
meteorology, and ambient PM where biases are  ground-level PMas PM components related to underestimation of
atmospheric chemistry exposure large concentrations; algerithms  BC and OC), fusing model results with satellite
and physics and bias  concentration, converting AOD data helps to minimize exposure errors.
corrected based on sometimes observations to PMzs

satellite data

within a city but
more typically
across a larger
region

concentrations vary
regionally; limited grid cell
resolution (i.e., grid cell
length scale is typically
1-36 km); spatial
smoothing of local PM
emissions sources; PMig-25
and UFP not typically
modeled.

APEX = air pollutants exposure model; BC = black carbon; CPC = condensation particle counter; FEM = federal equivalent method; FRM = federal reference method; IDW = inverse
distance weighting; SHEDS = stochastic human exposure and dose simulation; PM = particulate matter PM, s = PM with a 50% cut point at 2.5 pm; PMig-25 = PM fraction captured
between 50% cut points of 10 pm and 2.5 ym; SEM = scanning electron microscopy; UFP = ultrafine PM.
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3.4 Exposure Assessment and Interpretation of Epidemiologic
Study Results

The exposure assignment methods discussed in Section 3.3 inform different PM-health
relationships, depending on the method chosen. These relationships include those between ambient
concentration and health effects, between exposure concentration and health effects, and between ambient
exposure and health effects. The ambient exposure-health relationship is the main relationship of interest

for the causal determinations in the ISA, and it can be evaluated using personal monitors,

QN W N e

~J

that estimate local exposure concentration, including spatial averaging, LUR, and emissions/transport
8  models inform the exposure concentration-health relationship. Ambient concentration measured at an

9  ambient monitor can be used directly to inform the ambient concentration-health relationship.

10 The following sections review the available literature to explore how the selection of an exposure
11  metric may influence these relationships. The following discussion focuses on the relationships

12 influencing exposure, such as those between ambient PM concentration and exposure to ambient PM

13 (Section 3.4.1), factors contributing to error in estimating exposure to ambient PM (Section 3.4.2), and

14 the influence of exposure errors on epidemiologic study results (Section 3.4.4). Additionally, this section
15 explores copollutant relationships that may influence interpretation of the health effect estimates for

16  ambient PM exposures (Section 3.4.3).

3.4.1 Relationships Influencing Exposure

17 This section builds upon discussions from the 2009 PM ISA (U.S. EPA. 2009b) about

18  relationships between ambient PM measured outdoors, ambient PM infiltrating indoors, and resulting

19  relationships between indoor and outdoor ambient PM concentrations and between personal exposure to
20  ambient PM and ambient PM concentration. Summaries of relevant discussions from the 2009 PM ISA

21 are included in Section 3.4.1.1. Section 3.4.1.2, and Section 3.4.1.3.

3411 Air Exchange Rate and Infiltration

22 When concentrations measured at an ambient monitor are used as a surrogate for PMa s, PMio 25,
23 or UFP exposure, the metric does not account for reduction in exposure concentration related to the

24 process of infiltration indoors. The 2009 PM ISA (U.S. EPA, 2009b) describes how air exchange rate

25 (AER) can influence the infiltration of PM into the building envelope. AER is the airflow into and out of

26  abuilding and is represented by a in the conceptual model presented in Section 3.2.2. Several factors

27  affectthe AER, including weather conditions, building characteristics, and occupant behavior, resulting in
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substantial spatial and temporal variations in AER. Deposition is dependent on PM size, where UFP loss
can be expected to occur through Brownian diffusion, while PMio-2 5 losses may occur through
gravitational deposition or impaction. These phenomena were described in Sarnat et al. (2006a) and

summarized in the 2009 PM ISA. New developments mclude characterizing infiltration of UFP,
clarification on the factors influencing infiltration, and examination of air conditioning usage or AER as

N W e W N e

an effect modifier of PM: s exposure for epidemiologic studies.

~J

Field studies indicate that residential AER values vary by region and season, with substantial
variability among different residences. Cao and Frev (2011) observed higher geometric mean AER in

9  New York City (0.64 hour '), where housing stock tends to be older, compared with Harris County, TX
10 (0.37 hour ') and a six-county region of central North Carolina (0.54 hour!). The RIOPA (Relationship
11 Among Indoor, Outdoor, and Personal Air) study measured summer and winter AER in homes in three
12 U.S. cities (Los Angeles, CA, Elizabeth, NJ, and Houston, TX). Median AER values were similar in Los
13 Angeles and Elizabeth (0.87 hour ' and 0.88 hour ', respectively), but lower in Houston (0.47 hour )
14 (Yamamoto ¢t al., 2010). Isaacs et al, (2013) analyzed seasonal RIOPA and DEARS data and found
15  similar AER for the RIOPA cities and median AER of 0.92 hour ! in winter and 1.46 hour ! in summer.
16  Summer AER was lower than winter AER in Elizabeth (0.88 hour! vs. 1.07 hour!) and Houston
17 (0.37 hour ! vs. 0.63 hour!). A similar seasonal difference was observed in Windsor, Ontario
18 (0.14 hour ' vs. 0.3 hour ') (Wheeler et al., 2011). In contrast, Los Angeles AER values were higher in
19 summer than winter (1.14 hour™! vs. 0.61 hour!). More prevalent use of open windows in Los Angeles

20 and Detroit, where summertime tends to be less humid than in Elizabeth or Houston, may promote greater
21 air exchange. These differences may grow smaller with the increased prevalence of air conditioning,

22 because air conditioning usage is an important factor in infiltration (Allen et al., 2012). The higher winter

23 AER values in the northern cities of Elizabeth and Windsor may be due to an increased “stack effect”

24 resulting from indoor-outdoor temperature differential (Breen et al.. 2014).

25 Between-city variability in residential building characteristics may explain heterogeneity in
26 associations of PM, s with risk estimates (Section 11.1.6.3.2). Baxter and Sacks (2014} explored this idea

27 by performing k-means cluster analysis of factors related to AER, including percentage of homes with

28  central air conditioning, mean year the home was built, and mean home size, from the American Housing
29 Survey across 94 CBSAs across the U.S. Their analysis produced five clusters, labeled Clusters 1-5 by the
30 study authors. Clusters 2 and 3 had high proportions of air conditioning (72% each), and those clusters

31  primarily spanned the southern U.S. including the southeast and southwest. Homes in these clusters were
32 built, on average, in 1989 and 1970. Cluster 1, which crossed the Northeast, Rust Belt, Pacific coast, and
33 Denver, had slightly more than 1 quarter (27%) of homes with air conditioning, and had smaller homes on
34 average (1,672 ft?). Clusters 4 and 5 were primarily situated in the Northeast and Rust Belt, had air

35  conditioning in 56 and 19% of homes, and were somewhat larger (2,098 fi* and 2,253 fi?). In the latter

36 three clusters, homes were built on average in 1954, 1959, and 1945. The results of Baxter and Sacks

37 (2014) and Baxter et al. (2017), in a related study of short-term PMs s exposure and mortality, support the
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1  idea of a regional differences in building characteristics and health effects estimates based on north-south

[\

and ecast-west differences in housing clusters.

Vehicle AERs can be substantially higher than residential AERs, leading to rapid infiltration of
on-road pollutants. Many factors affect vehicle AER, including whether windows are opened or closed,
vehicle make and model, vehicle age, driving speed, and fan/recirculation setting on the vehicle
ventilation system. The combined effect of these factors result in AERs that vary by more than two orders
of magnitude, from less than 1 hour ' (approximately equivalent to a typical residential AER) to more
than 100 hour™ (Hudda et al., 2011). In a model fit to AER measurements on 39 vehicles driven at three

different speeds under recirculation conditions with closed windows, the most important variables were

o8 1 N i e W

10 vehicle age, mileage, and speed, plus an adjustment for manufacturer (Fruin et al., 2011). Fan speed and

11 vehicle shape were not influential variables.

12 More data have since been acquired to estimate Finr for UFP since the Sarnat et al. (2006a) study.

13 Sarnat et al. (2006a) found that Fiyr reached a maximum for particles of 200 nm size and was sensitive to

14  AER and PM composition. The smallest size they studied was 20 nm. Kearney et al. (2014) estimated

15 daily Finr for PMy, PM3 sy, and UFP (NC estimated by the authors to have 80% smaller than 100 nm) in
16  Edmonton, Ontario. They studied conditions in winter and summer and observed winter-time median Fiyy
17 of 0.45 for PM; (based on the SO+ method) and of 0.19 for UFP (based on P-TRAK portable sampler

18  measurements), a 58% reduction. During the summer, median Finr was 0.79 for PM; and 0.51 for UFP, a

19 35% reduction. In addition to the influence of season, Keamey et al. (2014) also tested building age and

20 ventilation characteristics and found that building age, airflow characteristics in the home, temperature
21  differential, and wind speed influenced Finr for PM, in winter, while fumace operation and wind speed
22 influenced Finr for UFP in winter. For summer, only wind speed influenced Finr for PMi, while portable air

23 cleaner operation and window opening influenced Finr for UFP. Rim et al, (2010) focused on UFP smaller

24 than 100 nm and were able to measure particles as small as 4.4 nm (under open window conditions) and
25 9nm (under closed window conditions) in their study of Fiyrusing an SMPS. For open window

26 conditions, Firr = 0.08 for particles in the 4.4-5.1 nm bin. For closed window conditions, Firr = 0.03 for
27 the 9—11 nm bin. For the 55—64 nm bin, Fiyr was 0.16 for closed windows and 0.47 for open windows.
28  The Rim et al. (2010) study also compared the Ci/Cow ratio with Fiye. Unlike for PMs 5 and PMio-2 5, the
29 Ci/Cou ratio was very close in value to Fir for UFP. These findings imply that very little PM in the

30 smallest size fractions infiltrates the building envelope, suggesting that large errors would occur from
31  assuming that concentrations measured at an ambient monitor were representative of indoor exposure to

32 ambient UFP, especially as the particle size decreased.

33 Indoor air filtration using high-efficiency particulate air (HEPA) filters can reduce Fir as well as

34 indoor total and ambient PMs s concentrations. Allen et al. (2011) conducted an intervention study by

35  temporarily installing HEPA filters in 25 homes in British Columbia, Canada during winter and early
36 spring. Indoor PMa s concentrations were 59% lower on average during HEPA filter operation
37 (4.6 vs. 11.2 ug/m’). Reductions of similar magnitude were observed for outdoor-generated PM; s
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1 (1.5vs. 3.5 pg/m?. Allen et al. (2011) estimated Fiy using the recursive method of Allen et al. (2003) and
found that the average infiltration of PM> s was reduced by 41% (0.20 vs. 0.34). These studics show a
consistent effect of HEPA filtration in reducing PM, 5 infiltration.

(95

Several recent studies suggest that air conditioning may modify the association between PM 5
and health effects. Allen et al. (2012) used PM: 5 and questionnaire data from the MESA-Air study to

model Fiyr as a function of air conditioning and heating use, window opening, and window insulation.

During the summer, central air conditioning usage was the most important factor in the model, accounting

for 80% of the overall model variability (model R? = 0.70). During the winter, the most important factor

o8 1 N i e

was 2-week average outdoor temperature, which accounted for 45% of the overall model variability

10 (model R? = 0.49). These results suggest that the variability in PM; 5 infiltration within and between cities
11 may account for increased variability in estimation of PMs s exposure and hence attenuation of the health
12 effect estimate. Hodas et al. (2012) considered sensitivity of Fi,r to PM» s mass concentration, PMa s

13 component concentration, proximity to roadways, and income. Generally speaking, Finr was higher when
14 calculated for PM2 s mass concentration rather than individual components. Finr was higher for both those
15 living near roadways and for AER of 0.90 hour ™!, which was identified as the “typical” AER for low

16  income homes compared with the general population. Hodas et al. (2012) suggested that variation in F

17 may account for exposure misclassification in cases where variability in AER leads to assignment of

18  incorrect F and for effect modification when conditions such as source proximity and poverty influence F.

19 Based on results of studies showing how Fiqr varies under different conditions, Allen et al. (2012)

20 suggested that infiltration could modify the health effect of PM- s exposure; this idea was explored in

21  other studies. Bell et al. (2009) tested if air conditioning prevalence (i.c., the proportion of homes with air

22 conditioning in a given community as indicated by the American Housing Survey) modified the effect of
23 PMa;s exposure concentration on cardiovascular and respiratory hospital admissions (HA) and of PMi, on
24 mortality. Over the course of a year they observed decreases of 30% for the effect of short-term PMy,

25 exposure on mortality and of 34% for the effect of short-term PM: s exposure on cardiovascular HA when
26 any air conditioning was in use. They observed an overall 45% increase in the effect of PM2 s on

27  respiratory HA for those who use air conditioning, but a break-down of their data showed that there was a
28  75% decrease in effect of PM» s on respiratory HA during the summer when air conditioning use would be

29 most prevalent. Sarnat et al. (2013a) also explored how AER can be a modifier of the effect of PMas,
30 NOx, and CO related to asthma ED visits in Atlanta neighborhoods. Parsing their data by low and high
31  AER (0.25/hour threshold) and poverty level (8.5% threshold), Sarnat ¢t al. (2013a) observed that the
32 majority of locations with high levels of poverty also had high AER. They attributed this observation to

33 old, drafty housing being more prevalent among those in poverty. Larger effect estimates were observed
34  among those with high poverty and low AER, however. When effect modification was tested using an
35  interaction term, a negative effect on ED asthma visits was observed despite increased PM» s and AER
36 being associated with increased ED visits. These results indicate that air conditioning may modify

37  associations between PMa s and health effects, but the results are not entirely consistent.
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Many of the newer studies of PM infiltration focused on characterizing infiltration of UFP,
clarification on the factors influencing infiltration, and examination of air conditioning usage or AER as
an effect modifier of PM» s exposure. UFP infiltration was found to decrease with decreasing particle size,
likely due to particle diffusion to surfaces. Many new studies noted differences in mfiltration for seasons
or between northern and southern cities. Areas with prevalent air conditioning usage tended to have lower
infiltration compared with arcas where window opening is prevalent. Indoor-outdoor temperature
gradients also likely influenced PM infiltration, with particles naturally following the warm-cold gradient.
Some recent studies found that air conditioning may also modify the effect of short-term PM; s exposure
and health effects.

NoRie T B R T IS S O R

3.41.2 Indoor—Outdoor Concentration Relationships

10 The 2009 PM ISA (U.S. EPA, 2009b) largely focused on infiltration of PM in the PM; 5 and

11 PMjo-25 size ranges, finding that infiltration of PM indoors decreased with increasing particle size. This

12 section builds on the literature review from the 2009 PM ISA with a focus on relationships between

13 indoor and local outdoor PM concentrations in different size fractions, particularly PM» s and UFP. Most
14 of the studies published since the 2009 PM ISA that evaluated indoor-outdoor PM relationships were

15 conducted outside the U.S., including studies in Europe, Canada, Mexico, South America, the Middle

16  East, and Asia. Since PM levels, sources, and composition are likely to differ substantially in some areas
17 from those typically encountered in the U.S,, this section focuses on North American and European

18 indoor-outdoor studies.

19 Recent literature has added data to the characterization of indoor-outdoor relationships across the
20 PMas and PMio-» 5 size fractions. A multicity study in Europe compared indoor and outdoor residential
21  24-hour average concentrations for NC (7-3,000 nm), PMz s, and PM1-25 at 152 homes in Helsinki

22 (Fmland), Athens (Greece), Amsterdam (the Netherlands), and Birmingham (U K.) (Hock ¢t al., 2008b).

23 Median indoor-outdoor correlations for PM o2 5 were the lowest of the three PM metrics in all cities,

24 ranging from 0.10—-0.39. In Helsinki and Amsterdam, NC indoor-outdoor correlations were lower than
25 PMa;s correlations (0.41 vs. 0.74 and 0.58 vs. 0.85, respectively), while in Athens and Birmingham, NC
26  correlations were higher (0.80 vs. 0.63; 0.50 vs. 0.35). A common indoor source, gas cooking, was

27 prevalent in both Amsterdam and Birmingham, cities with differing correlation magnitude, and so is

28  unlikely to explain city-to-city differences in correlations. Consistent with observed low correlations, the
29 regression slope of indoor on outdoor concentrations (a measure of infiltration, with a slope less than one
30 indicating less infiltration) was lower for PM;,-2 5 than the other two PM metrics, ranging from 0.11-0.16.
31  NC slopes ranged from 0.19-0.42 and were lower than PM; 5 slopes (range: 0.39-0.48) in Amsterdam,
32 Birmingham, and Helsinki, while the two slopes were roughly equivalent in Athens. Again, infiltration
33 slope results were generally consistent with correlation results, being either both high or both low in a

34  particular city. Buonanno et al. (2013a) reported 1/0 and the ratio of indoor to fixed-site monitors for

35  three schools in Cassini, ltaly and found 1/0 ranged from 0.63—0.74 while the indoor to fixed-site ratio
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ranged from 0.47—1.53. These values are much higher than those reported in the Hoek ¢t al. (2008b)
study. Another important finding is that PM;0-2 5 exhibited the lowest infiltration and indoor-outdoor
correlation of the three metrics, with NC and PM; 5 infiltration behavior similar to one another. Semmens
between indoor PM, 5 and various NC size fractions were very high for NC less than 1 pm in size (0.94
and 0.93 for NC 0.3-0.49 pm and 0.5-0.99 um, respectively). Correlations with PM, 5 decreased
monotonically for larger NC size fractions, with PM; s~PM,o-2 5 correlations of 0.46 for NC 2.5-4.99 pm

and 0.35 for NC 5.0-9.99 um. Correlations among indoor NC size fractions were highest for adjacent

NoRie T B R T IS S O R

bins. Collectively, these results indicate that differences in source patterns, spatial concentration

—
<

heterogeneity, housing stock, meteorology, and other factors contribute to different indoor-outdoor

[u—
[

relationships in different urban areas, particularly for NC and PM: 5.

12 Results for indoor-outdoor relationships for PMs s concentration were not consistent across

13 studies of the effect of season. Several single-city studies in the U.S. and Canada have evaluated indoor-
14 outdoor relationships by season. For example, in Boston, median residential indoor-outdoor slopes for
15 24-hour average PM, s were higher in summer than winter (0.74 vs. 0.53) for a panel of 25 participants
16  studied in 2000 (Brown et al., 2008). Hsu et al. (2012) reported correlations between indoor and outdoor

17 (outside residence and fixed-site monitors) concentrations of PMio 25 and PMa s in New York City, NY

18  and Seattle, WA. For PMis25 in New York City (correlations not reported for Seattle), Spearman

19  R=0.20 for indoor-outdoor and 0.08 for indoor-fixed-site during the summer and Spearman R =-0.12
20 and —0.07 for indoor-outdoor and indoor-fixed-site during the winter. For PM- s in New York City,

21 Spearman R = 0.44 for both indoor-outdoor and indoor-fixed-site in winter and Spearman R = 0.57 and

22 0.33 for indoor-outdoor and mdoor-fixed-site in summer. Hochstetler ¢t al. (2011) measured PMz s, EC,

23 and NC inside and outside three public schools in Cincinnati, OH and observed a lower slope and R? for
24 PM:s (/O slope = 0.24, R? = 0.08), compared with EC (I/O slope = 0.44, R? = 0.66) and NC (I/O

25  slope = 0.68, R? = 0.72). In Windsor, Ontario, Kearney et al. (2011) calculated the indoor-outdoor ratio
26  (I/O) for UFP (20-100 nm), and found wide variation with median I/0 of 0.19 (95th percentile: 0.64) and
27 0.27 (95th percentile: 0.61) for summer measurements for 2005 and 2006, respectively, and 0.25 (95th

28 percentile: 0.45) for winter, 2006 measurements. Kearnev ¢t al. (2011} based these numbers on nighttime

29  measurements, when it was assumed that there were no indoor sources of UFP so that I/O approximates
30 Fiur I/O estimates based on recursive and censoring models produced similar results. Daily I/O (not
31  slopes) in Windsor were similar for PMz s (0.5), BC (0.45), and 20—1,000 nm NC (0.55) at approximately

32 90 residences, averaging across summer and winter sampling seasons (Wheeler et al., 2011). Hourly I/0

33 for NC were much higher during dinnertime (approximately 1.5), indicating indoor NC sources from

34 cooking (Figure 3-2); this also contributed to a higher daily ratio relative to the other PM metrics. For

35 PMis 25 in Regina, Saskatchewan, 5-day geometric mean concentrations were lower indoors than

36 outdoors during summer (4.3 vs. 8.8 ug/m?) in a set of 100 residences, but the opposite was true for a set
37 of 79 residences during winter, with higher indoor concentrations (3.7 vs. 2.5 pg/m?). The spatial

38  coefficient of variation for outdoor PM¢-2 5 concentrations was higher in winter than in summer.
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Variation in indoor-outdoor relationships among different studies for warm and cold months may relate to

different contributions from indoor sources, such as cooking and heating, between cities.

Time of day also influences VO ratios, as shown in Figure 3-3 for data reported by Wheeler ¢t al.
(2011). In addition, Semmens et al. (2015) studied residences relying mainly on wood stoves for heating
and found that 1/0 ratios were approximately 1.0—1.2 (indicating indoor sources) during daytime hours

(6 am.—10 p.m.), indicating the wood stove or other indoor sources were contributing to indoor PM.
Overnight (10 p.m ~6 a.m.) ratios were approximately 0.6. The relatively lower overnight I/0 supports the

finding that indoor sources were driving the high I/O values during the day.

25
" - UJFP (N =423}
M, ¢ (N =373}

o B3 (M 360

Indeodautdoar ratlo

2 4 6 & 40 12 14 16 418 20 22 24
Hour of the day (12:00 = noon, 24:00 = mideight)

Note: Standard errors are only shown for the I/O for UFP. This figure was reproduced from Wheeler et al. (2011). The figure shows
how the indoor-outdoor ratios change with hour of day for UFP, PM,;, and BC. Each type of PM has a peak indoor-outdoor ratio
between 17:00 and 20:00. However, the peak indoor-outdoor ratio is much higher for UFP than for PM, 5, which is slightly higher
than for BC.

Source: Permission pending Wheeler et al. (2011).

Figure 3-2 Indoor-outdoor ratios for UFP, PM2s, and BC measured at
90 residences.

SECTION 3.4: Exposure Assessment and Interpretation of Epidemiologic Study Results
August 2018 3-59 DRAFT: Do Not Cite or Quote

ED_002220_00002287-00320



NoRie T B R T IS S O R

e e
[

New research on UFP I/O suggest that I/O decreases with decreasing particle size within the
ultrafine size range. Indoor-outdoor ratios were calculated for a manufactured house located on the
National Institute for Standards and Technology (NIST) campus in Gaithersburg, MD to characterize

infiltration to test how /O varies across UFP size (Wallace and Ott, 2011). /O generally increased with

__________________

window I/O was always higher and had greater variability than closed window I/O. This pattern is
consistent with observations by Sarnat et al. (2006a} presented in the 2009 PM ISA (U.S. EPA. 2009b) in

which Finr increases with increasing particle size up to about 100 nm. Above 200 nm, Samat et al. (2006a)

reported that Finr declined with increasing particle size up to 8 um. Across all experiments, Wallace and

the contribution of outdoor UFP exposure to total UFP exposure would likely increase in urban

environments.
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Source: Permission pending Wallace and Ott (2011).

Figure 3-3 Indoor-outdoor ratios for UFP size obtained in a test house on the
National Institute for Standards and Technology (NIST) facility for
open and closed window conditions.
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Recent studies reinforce previous conclusions that I/indoor-outdoor relationships are sensitive to
particle size, with I/O typically decreasing in the PMio 2 5 range. New studies add to the literature base for
UFP, where I/0 was found to decrease with decreasing particle size. UFP movement is more influenced
by Brownian diffusion than are larger particles, which likely caused more UFP to diffuse to building
surfaces instead of being transported indoors. Additional studies added to the characterization of indoor-

outdoor relationships for different seasons and times of day. For most studies, I/0O was higher during
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summer than winter and during daytime compared with nighttime.

3.4.1.3 Personal-Ambient Concentration Relationships

8 The new literature on personal-ambient relationships adds to findings from the 2009 PM ISA

9 (U.S_EPA, 2009b), in which moderate correlations (0.3—0.7) were observed with median personal-

10 ambient slope slightly higher than 0.5. The general understanding of these relationships is unchanged

11 since the 2009 PM ISA. As with the previous section on indoor-outdoor relationships (Section 3.4.2),

12 many of the studies published since the 2009 PM ISA that evaluated personal-ambient PM relationships
13 were conducted outside the U.S ., including studies in Europe, Mexico, South America, the Middle East,
14  and Asia. Since PM levels, sources, and composition are likely to differ substantially in some areas from
15 those typically encountered in the U.S.. this section focuses on North American and European personal -
16  ambient studies.

17 High correlations suggest that ambient concentrations are a good surrogate for personal exposure,
18  while low correlations indicate exposure measurement error when using ambient concentration to

19 represent personal exposure. Several studies, many of which were available at the time of the 2009 PM
20 ISA (U.S.EPA, 2009b), have evaluated relationships between personal exposure and ambient PM

21  concentrations in various U.S. cities, including: Baltimore, MD; Boston, MA; Chapel Hill, NC; Detroit,
22 MI; and Steubenville, OH (Meng et al.. 2012; Brown ¢t al., 2009; Williams ¢t al., 2008; Samat et al.

23 2006b; Koutrakis et al ., 2003; Sarnat et al., 2003; Chang et al., 2000; Sarpat et al.. 2000). These studies

24 all evaluated 24-hour average exposures, except for Chang et al. (2000), which evaluated hourly

25 exposures in a variety of microenvironments (¢.g., indoor-home, indoor-other, outdoor-near-road,
26  in-vehicle). Figure 3-4 shows personal-ambient correlations reported for Baltimore in Chang et al. (2000)

27  and Sarnat et al. (2000) and New York City (Hsu et al., 2012). Both Baltimore studies evaluated PMz s,
28  and Sarnat et al. (2000) reported personal-ambient correlations for PMio, PMio 25, and SO.*". Hsu et al.

29 (2012) also reported personal-ambient correlations for PMyy. Correlations ranged widely for PMa s, with a
30 median of approximately 0.4 and an IQR of 0.3-0.7. PM,, correlations were similar to those for PM: s,

31  while PMys 25 correlations were somewhat lower, suggesting factors such as spatial variability and

32 differential infiltration affect exposure to ambient PMio-2 5. These results also suggest that PM o was

33 comprised primarily of PM; s in these samples. Sulfate correlations were higher than those for PMzs. The
34 recent findings of Hsu et al. (2012), in conjunction with older studies in the literature, indicate that a
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1 greater portion of the variability in personal exposures is explained by variability in ambient PM for PM; s
2 and sulfate in PM> s, which tend to have lower spatial variability than PMio-» 5 and UFP.
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Source: Permission pending, Hsu et al. (2012); Chang et al. (2000); Sarnat et al. (2000).
Figure 3-4 Correlations between personal exposure and ambient PM
concentration in Baltimore, MD.
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Regressing personal exposure on ambient PM concentration yields a slope factor expressing the
fraction of personal exposure from ambient PM. Figure 3-5 presents personal-ambient slopes (i.¢., the
ratio of total personal exposure to ambient concentration) from studies in the four cities listed previously
(Meng et al., 2012; Brown et al., 2009; Samnat et al.. 2006b; Koutrakis et al.. 2003; Samnat ¢t al.. 2005).
Several of these studies evaluated EC and SO4?” in addition to PM, s. Median slopes for PM, s, EC, and

SO4* were between 0.5 and 0.6. The wide variability in personal-ambient slopes is likely due in part to

the study design, which evaluated personal exposure in different seasons and with different building
ventilation conditions (e.g., closed vs. open windows). The variability may have also been attributed to
variation in penetration and deposition for the components and houses. Rvan et al. (2015a) and Brokamp

personal exposure samples for PM» s mass and 24 PM; s trace metals (Ag, Al, As, Ba, Br, Ca, Cl, Cr, Cu,
Fe, K, Mn, Ni, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn, Zr) from the RIOPA study of homes in Los Angeles,
CA, Houston, TX, and Elizabeth, NJ. They presented correlation and outdoor-personal ratios (O/P) for
each PM, s component. Correlations of Spearman R > 0.8 were reported for S and V, while Spearman

R < 0.4 was reported for Ag, Al, As, Ba, Ca, Cl, Cr, Cu, Fe, K, Mn, Ni, Sb, 81, Sr, Ti, Zn, Zr, and for
PM, s mass. Median O/P > 1 was observed for As, Br, Sb, Se, and V and O/P < 1 for PM; s and the other
unavailable for PM,o-25 or UFP in these studies. These findings indicate that variability in the personal-
ambient slope reflects differences in ventilation and other localized conditions for PM; s mass

concentration, which is not very sensitive to PMs s composition.

New studies agree with the previously published literature on personal-ambient relationships.
Studies have examined personal-ambient correlations for different PM size fractions and found that a
greater portion of the variability in personal exposures is explained by variability in ambient PM for PM3 5
and sulfate in PM5 s, compared with PMi, 2 s, which tends to have greater spatial variability than PM;5s.
Median personal-ambient slopes are generally slightly greater than 0.5, and they likely reflect differences
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Source: Permission pending, Meng et al. (2012); Brown et al. (2009); Sarnat et al. (2006b); Koutrakis et al. {2005); Sarnat et al.
(2005).

Figure 3-5 Slopes of the relationship between personal exposure and
ambient PM concentration in four U.S. cities.

3.4.2 Factors Contributing to Error in Estimating Exposure to PM

This section builds upon discussions from the 2009 PM ISA (U.S. EPA. 2009b) about factors

having the potential to cause error in exposure concentration estimates. Time-activity patterns, spatial

variability, instrument error, and model accuracy and precision are discussed below, because these topics
were frequently examined in exposure measurement error discussions. Summaries of each factor’s
discussion from the 2009 PM ISA are included in Section 3.4.2.1, Section 3.4.2.2, Section 3.4.2.3, and
Section 3.4.2.4.
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3.4.21 Time—Activity Patterns

1 The 2009 PM ISA (U.S. EPA, 2009b) reviewed time-activity behaviors among the population and
2 how time spent in different locations varies among age groups. Recent additions have been made to

3 time-activity databases, and technological advances in geographic positioning system (GPS) technologies
4 have also expanded the information base regarding time-activity. Such new tools have enabled

5  examination of factors that influence time-activity patterns and errors in those relationships.

6 Updated data are available from the Consolidated Human Activity Database (CHAD) to compare

7 time-activity among different population strata for 25,431 individuals (Isaacs, 2014). Across the

8  population, 75% of time is spent indoors at the place of residence; 5.5% is spent in transit; 16% indoors at
10 spent indoors at home for children younger than 6 years and for adults older than 64 years, while teens
11 ages 12—19 years and adults 20—64 years spent the least amount of time indoors at home (72 and 71%,
12 respectively). Similarly, young children spent the least amount of time in transit (4.0%), while adults
13 20-64 vears spent the most time in transit (6.9%). Adults 20—64 also spent the largest proportion of the
14 day outdoors (3.4%), while older adults spent the least amount of time outdoors (2.2%). Young children
15 ages 0—5 years and children ages 6—11 years spent less time outdoors than adults (2.4 and 3.0%,
16  respectively). When comparing time-activity data across race (Table 3-7), Hispanic study participants
17 spent slightly more time indoors at home than average (78%), while White study participants spent the
18  most time outdoors (3.3%) compared with Asian (2.0%), Black (2.1%), and Hispanic (2.3%) participants.
19  Males spent more time outdoors compared with females (3.6 vs. 2.2%) (Table 3-8), and adults
20 20-64 vears with low and high education both spent less times indoors at home (74 and 70%,
21 respectively), more time indoors at work/school/other (16 and 19%), and more time outdoors (3.7 and
22 3.5%) compared with the 20—64 year-old adult population (3.4%) (Table 3-9). It is possible that missing

23 education data corresponded with lower time spent outdoors. It was most surprising to find that children
24 spent less time outdoors than adults, while sex-specific differences in time-activity data were anticipated.

25 Recent studies have focused on the use of GPS technologies, such as in smartphones, to develop

26  detailed time-activity pattern data. For example, Glasgow et al. (2014) analyzed the frequency of

27  Android-based smartphones in recording positional data among a panel of study participants and found
28  that on average 74% of the data were collected over intervals shorter than 5 min, which is a marked

29  improvement over many time-activity studies using diaries.
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Table 3-6  Total and age-stratified time activity data from the Consolidated

Human Activity Database.

Location Type All 0-5 yr 6-11yr 12-19yr 0-19yr 20-64 yr 65+ yr
Indoor-residential 75.1% 82.0% 74.4% 71.6% 76.2% 71.4% 82.9%
Transit 5.53% 3.96% 4.29% 513% 4.42% 6.92% 514%
Indoor-work/school/other 15.5% 10.1% 16.7% 19.9% 15.3% 17.9% 8.71%
Outdoor 2.87% 2.35% 2.96% 2.53% 2.62% 3.39% 2.18%
Uncertain or missing 0.97% 1.59% 1.65% 0.85% 1.40% 0.48% 1.05%

Table 3-7 Total and race/ethnicity-stratified time activity data from the
Consolidated Human Activity Database.

Location Type All Asian Black Hispanic White
Indoor-residential 75.1% 75.3% 74.8% 78.4% 74.8%
Transit 553% 501% 5.25% 5.05% 5.54%
Indoor-work/school/other 15.5% 16.3% 16.6% 13.4% 15.0%
Outdoor 2.87% 2.02% 2.09% 2.34% 3.30%
Uncertain or missing 0.97% 1.42% 1.26% 0.84% 1.45%
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Table 3-8  Total and sex-stratified time activity data from the Consolidated
Human Activity Database.

Location Type All Female Male
Indoor-residential 75.1% 76.6% 73.4%
Transit 5.53% 5.47% 5.60%
Indoor-work/school/other 15.5% 14.8% 16.4%
Outdoor 2.87% 2.21% 3.64%
Uncertain or missing 0.97% 0.92% 1.04%

Table 3-9  Total and education-stratified time activity data from the
Consolidated Human Activity Database, among adults 20-64 years.

Location Type All 20-64 yr Low Education High Education
Indoor-residential 71.4% 73.7% 70.0%
Transit 6.92% 6.42% 7.12%
Indoor-work/school/other 17.9% 16.0% 19.1%
Outdoor 3.39% 3.73% 3.52%
Uncertain or missing 0.48% 0.22% 0.27%

Positional errors are a concern for GIS and GPS-based technologies. Several studies found that

median positional errors based on smartphones were less than 26 m (Ganguly et al., 2013; Lane et al

2013; Wu et al., 2010). Glasgow et al. (2014) observed much larger errors, with an overall median

positional accuracy of 342 m and a range from 98 to 1,169 m using an Android-based smartphone, while
technologies. To test the impact of the positional errors on concentration estimates used in exposure
assessment studies, Ganguly et al. (2015) compared R-LINE modeled residential PM, s concentrations
when the positions were estimated with GIS or GPS over buffers of 0—-100 m, 100-200 m, 200-500 m,

and >500 m. Median concentration measurement errors were 5% or less for each buffer for annual

average concentrations and 6% or less for 24-hour max concentrations. Average errors were 10% or less

for each buffer for both annual average and 24-hour max concentrations.
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Survey tools to assess time-activity may be subject to recall error among the subjects. Spalt et al.
(2015} administered a survey to all participants in the Multi-Ethnic Study of Atherosclerosis (MESA) Air
Study to ascertain information about time spent indoors and outdoors at home, at work/volunteer/school,
in transit, or in other locations. A subset of the study population was asked to complete a time-activity
diary as well. Correlation for indoor locations was Spearman R = 0.63 for home, Spearman R = 0.73 for
work/volunteer/school, and Spearman R = 0.20 for other locations. Correlation for outdoor locations was
much lower, with Spearman £ = 0.14 at home, Spearman R = 0.20 for work/volunteer/school, and

Spearman £ = 0.10 for other locations. In transit, Spearman R = 0.39. These results suggest that study

NoRie T B R T IS S O R

participants have better recall of the times spent inside their home or work/volunteer/school compared to

—
<

other activities, because time spent at home or at work/volunteer/school tends to occur at routing times.

11 Excluding time-activity patterns from exposure studies may lead to bias and uncertainty in the
12 exposure estimate. Nvhan et al. (2018) combined GPS records from 407,435 individuals in the

13 metropolitan Boston, MA area with a hybrid model using land use regression and satellite data to predict

14  PMas concentration on an hourly basis. They compared the time-activity-based model with one that used
15 the daily average PM: s concentration (also based on the hybrid LUR-satellite model) at location of

16  resident for each participant and found that the residence-based exposure model produced predictions that
17 were 9% lower than the model accounting for time-activity when averaging the results over a year. This

18  suggests that omission of time-activity data may lead to underestimation of the exposure.

19 Residential mobility is one factor leading to error in estimating exposure for long-term exposure
20 studies. Using a single address to represent exposure concentration over a period of several years may

21  result in either under- or over-estimating exposure during the study period. For example, Brokamyp ¢t al.
22 (2015} analyzed residential mobility for a cohort of children over the first seven years of life in

23 Cincinnati, OH and found that 54% of the children changed residential address during that time, resulting
24 in a4.4% decrease in the cohort’s average traffic-related air pollution exposure concentration (defined as
25 BC estimates from an LUR model). They also noted that if the birth address is used for exposure

26 estimation during the entire study period, exposure misclassification is increased for those that move

27 earlier (due to more years at the incorrect address) or are more highly exposed (due to a greater likelihood
28  of moving). An epidemiologic study of asthma incidence at age seven showed that not accounting for

29  residential mobility resulted in bias toward the null.

30 Recognizing that the CHAD database observed people (across population subgroups) spending
31  approximately 5.5% of their time in vehicles, several studies have measured UFP concentrations in and

32 immediately outside vehicles to estimate infiltration. Hudda et al. (2012} observed that I/O was positively

33 associated with increasing AER for vehicles tested in Los Angeles, CA and Sydney, Australia each with
34 recirculating air and outside air intakes. /O increased with increasing vehicle speed and age, with a
35 maximum of approximately 0.75 under recirculating conditions and of approximately 0.9 under outside

36 airintake. Bigazzi and Figliozzi (2012) estimated I/0 when a vehicle in Portland, OR was operated with

37  windows down, windows up with outside air intake, and windows up with recirculating air. Under those
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conditions, I/0 decreased from 0.85 to 0.53 to 0.1-0.17, respectively. Knibbs ¢t al. (2010) tested /O for
five vehicles and four ventilation settings (outdoor air intake with lowest and second lowest fan speed,
recirculation on with lowest fan speed, recirculation on with fan off). Older model vehicles (prior to 2000)
had /O of 0.89—-1.04 for the outdoor air intake settings and 0.29-0.47 for the recirculation settings.
Models built after 2000 had /O of 0.66—1.04 for outdoor air intake settings and 0.08—0.68 for

recirculation settings. Yamada et al. (2016) took measurements along four road segments and inside one

tunnel in the greater Tokyo, Japan area for particles smaller than and larger than 50 nm and using open air
or recirculating air. When fresh air entered the vehicle, /0 ranged from 0.5 to 0.6 for particles smaller
than 50 nm and from 0.8 to 0.9 for particles larger than 50 nm. When the test automobile's ventilation was
operated in recirculation mode, infiltration ranged from 0.1 to 0.2 for particles smaller than 50 nm and

al. (2015) measured vehicle ventilation filtration efficiency for UFP, which can be used to mterpret I/O by
subtracting reported filtration efficiency from 1. They observed I/O of approximately 0.3 when the
vehicle's standard ventilation setting was used, which reduced to 0.1 when the vehicle was put into
recirculation mode. In all, these studies show that large variability in I/O occurs with both outdoor air

intake and recirculation settings, but I/O tends to be higher for outdoor air intake.

Exposure to PM, particularly UFP, has been found to be elevated during bicycling and walking
near roadways (Buonanno et al., 2013b; Hudda et al., 2012; Berghmans et al., 2009; Boogaard et al.,
2009; Briggs et al., 2008). A study in Minneapolis, MN used city-wide traffic flows and a LUR model for

particulate matter (including NC, BC mass, and PM; 5) to analyze the relationship between bicycling or

walking and PM exposure concentrations in different parts of the city (Hankev et al.. 2017). The authors

found that arcas classified as high activity and high exposure made up approximately one-tenth of the
total grid cells, but accounted for 20—44% of active travel.

Updated time-activity data and tools for assessing time-activity data have improved the general
understanding of time-activity data and related uncertainties in recent years. Children were surprisingly
found to spend less time outdoors than adults, but White respondents did spend more time outdoors than
their Asian, Black, and Hispanic counterparts. New technologies to assess study participant location,
errors related to study participant recall, and residential mobility have been used to determine that
location-based errors are within 6% for short-term and long-term exposure assessment, while omission of
residential mobility can result in a bias in the exposure estimate, resulting in biasing the health effect

estimate for a study of long-term PM; s exposure.

3.4.2.2 Spatial Variability in Concentrations

The 2009 PM ISA (LS. EPA, 2009b) examined spatial relationships among PM: s between AQS
monitoring locations across neighborhood and urban scales. In general, this analysis suggested that

correlations between monitors across space depended on the specific city’s meteorology, topography, and
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1 source mixture. For all cities studied, the between-monitor spatial correlations decreased with increasing
2 distance between monitors. However, the correlation for PM» s between Boston, MA monitor pairs was
3 roughly Pearson R = 0.8 even when the monitors were 100 km apart. In contrast, correlation between
4 PM,; for Los Angeles monitor pairs was roughly Pearson R = 0.2 when the monitors were 100 km apart.
5  The mountains and inversion patterns were thought to play a role in this comparatively low correlation.
6  The 2009 PM ISA also investigated neighborhood scale monitor pair correlations among FRMs or FEMs
7 in 15 CSAs or CBSAs and found that within 4 km, average correlation of Pearson R = 0.93 was
8  maintained for a 4 km distance. At the time of the 2009 PM ISA, data were not available to study spatial
9  variability in the concentration surface for PM1o-25 or UFP. Spatial distribution data for both UFP and
10 PMio-25 are still limited, especially for UFP. Data for UFP were available for two cities (Los Angeles, CA
11  and Rochester, NY), and data from the Los Angeles study suggested that UFP had moderate spatial
12 varability (coefficient of divergence [COD] between 0.2 and 0.6). It was thought that some background
13 UFP reduced spatial variability, especially for particles larger than 40 nm (Section 2.5.1.2.4). Although
14  some PMio 15 data are available across the nation, micro-to-neighborhood scale data are not widely
15 available at this size cut (Section 2.5.1.2 3). In cities where PM 025 measurements have been made in
16  multiple locations, inter-monitor correlations were low. These limitations create uncertainty in
17 characterizing spatial variability of exposure concentrations and its impact on interpreting results from
18  epidemiologic studies, especially for long-term exposure to PMio-25 and UFP.
19 Limitations in the use of ambient monitoring data to estimate exposure concentration arise when

20 there is a lack of homogeneity and spatial autocorrelation of PM mass concentrations, which may occur
21  for some size fractions and components (Baxter et al., 2013), causing the spatial range over which such

22 estimates are used to vary widely. PMjo- 5 and UFP concentration data tend to be more heterogencous in
23 space and hence more susceptible to spatial error (Section 2.5; Section 3.4.2.2). For large metropolitan
24 areas, population exposure to primary anthropogenic components of PM (of any size fraction) may be

25 substantially overestimated in terms of average concentration and temporal variation by the use of a

26  fixed-site ambient monitor in close proximity to an industrial or energy generation source (Sarnat et al |

27 2015; Belletal., 2011b). For example, traffic-related UFP and PM; s components such as EC have

28  clevated concentrations in close proximity to busy roadways (Zhu ¢t al., 2009), potentially resulting in

29  exposure misclassification (Ozkavnak et al., 2013; Bravo et al., 2012). Saturation sampling over longer

30 time-scales may be used to ascertain spatial variation across an urban area, but at the expense of temporal
31  resolution (Matte et al., 2013). Another limitation of using fixed-site ambient monitors to estimate

32 exposure concentration is that ambient monitoring data can be incomplete due to missing data and

33 sampling frequency limitations. Often missing data can be estimated using data from nearby monitors

34 (e.g., by lincar regression) or by temporal interpolation. Temporal interpolation can also be used for data
35  analysis when the data are sampled with 1-in-3 or 1-in-6-day sampling frequencies (Junger and de Leon
36 2015; Gomez-Carracedo et al., 2014; Junninen et al., 2004; Hopke et al.. 2001), which is common for PM
37  components. Interpolation schemes are used to capture hour-of-day and day-of-week trends. Estimates of

38  mixing height using meteorological data and/or tracer component data are also used to improve the
39  completeness of ambient monitor data.
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Limited available PMi,-2 5 data for inter-site correlation and COD support previous statements
that PMio 2 s tends to be spatially variable. Thornburg et al. (2009) measured correlation and COD in

Detroit for personal multi-stage impactors measuring PMo-2 5 and found Pearson R = 0.28—0.63 and
COD =0.17-0.41 during Summer and Pearson R = 0.03—0.76 and COD = 0.26—0.50 during Winter.
Similarly, Lagudu et al. (2011) measured PMo-2 5 using passive samplers and observed COD = 0.44—-0.78
in the Spring and COD = 0.37-0.88 in the Fall. Neither the Thornburg et al. (2009) nor the Lagudu et al.
(2011) studies included data for distances between specific monitors to ascertain if COD increased with

increasing distance between samplers. This lack of data adds greater uncertainty to the characterization of
PMo 2 5 spatial variability.

Spatial variability of PMa s components can vary among the components. Bell et al. (2011a)
presented correlations for FRM or FEM pairs for seven PM; s components (NH.', EC, NOs~, OC, Si, Na',
S) in a review paper. Bell et al. (2011a) observed that the bulk of the monitor-pair correlation is

components had wider variability in correlations even when the monitor pairs were closer together, as was
the case for EC, Si, and Na*. OC correlations were more variable than for NH;", NOs~, or SO4> across

monitor pair distances but not as variable as EC, Si, or Na™. Dionisio et al. (2013) compared the

coefficient of vanation (CV = o/p) of six air pollutants™ concentrations across space using a hybrid
AERMOD-background model of concentrations in the Atlanta, GA metropolitan area. They observed the
following ordinal relationship of the covariates” median CVs: NOx (0.88) > CO (0.58) > EC

correlation functions, and they observed that the spatial correlograms for Os, PMio, PM2 s, and the PMa: s
components S04, NO;~, NH.", and OC were much less steep than for NO», NOx, CO, SO», and EC.
Hence, PM- s was observed to be less spatially variable than copollutants frequently associated with
traffic (NOx, CO, EC) or industry (SO-). Similarly, Goldman ¢t al. (2012), Ivv et al. (2008) and Sajani et

comprised primarily of PM s, then these findings would be consistent with the Dionisio et al, (2013)

results as well. These findings could reflect the influence of local sources and suggest that spatial
variability of PM2 s components could have a large influence on monitor pair correlations for PMa s, with
components with greater variation being influenced more by primary sources than components produced
through secondary atmospheric chemistry.

SECTION 3.4: Exposure Assessment and Interpretation of Epidemiologic Study Results
August 2018 3-71 DRAFT: Do Not Cite or Quote

ED_002220_00002287-00332



W = W DN e

6

NO, || NH, | EC

; | ocC
A1 100 O 50 100 50 100 0 50 100
distance {km) distance {km) distance (km) distance (km)
Source: Permission pending Goldman et al. (2012).
Figure 3-6 Spatial correlation of PM2s components for monitor pairs

described in the review study.

It was known at the time of the 2009 PM ISA (U.S. EPA, 2009b) that spatial variability of PM: s

was lower than for PMio— 5 and UFP. Data to characterize PM1o-2 5 and UFP spatial concentration

surfaces remain limited but generally support that comparison. More recent data for PM, s components
shows that components that are influenced by primary sources tend to be more spatially variable than

components produced via atmospheric chemistry.

3.4.2.3 Instrument Accuracy and Precision

The influence of instrument error on health effect estimates from epidemiologic studies varies

with study design. Inter-monitor comparison is often used to estimate instrument precision. Accuracy and
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1 precision of ambient monitors is described in Section 2.5.4, and accuracy and precision for personal PM: s
monitors were described in the 2009 PM ISA (U.5. EPA, 2009b) and have not changed markedly since
the last review.

(95

More attention is given at present to PMio-2 5, because those measurements were not as prevalent
at the time of the 2009 PM ISA (U.S. EPA, 2009b). Errors associated with measurements of PMi2 5 are
described m Section 2.4.2. Use of subtraction methods for estimating PMio-2 s concentration can lead to

substantial errors. This is particularly true when the PMio-2 5 is semivolatile. Clements et al. (2013} tested

different methods for measuring PM1y and PM s and calculating PMio-2 5 via subtraction methods and

o8 1 N i e

found that the nonvolatile PM endemic to Colorado were measured with less error by instruments that did
10 not account for semivolatile losses. Biases in calculated PMis— 5 concentrations caused reductions in

11 correlation coefficients across sites, leading to an incorrect picture of spatial variability in PMio- 5

12 concentration across the test area.

13 A number of studies have characterized errors associated with measuring UFP (Section 2.4.3).
14 UFP concentrations are often referred to without specific reference to size distribution. Some studies
15 report number count as UFP, while other studies use mobility methods to impose an upper particle size
16 limit of 100 nm or 250 nm. CPCs typically have lower size detection limits of 10 nm (Lin and Kim.

17 1977), while mobility have lower size detection limits of 1 nm (Kangasluoma et al., 2015; Lehtipalo et al.

18 2014; Kuang et al.. 2012: hang et al.. 2011; Vanhanen et al.. 2011; Iida et al.. 2008). Hence, use of CPCs

19  in an epidemiologic study of short or long-term exposure may lead to an underestimation of the UFP

20 exposure concentration.

21 For epidemiologic studies of short-term exposure, Goldman et al. (2010) investigated instrument

22 precision error at locations where ambient monitors were collocated. Correlations between collocated

23 measurements of PM» s mass and components (SO4*, NOs~, NH,*, EC, OC) ranged from Pearson

24 R=0.85 for OC to Pearson R = 0.97 for PM. s mass. Depending on specific conditions such as sampler
25 type (e.g., passive vs. continuous), meteorological conditions, or presence of semivolatile PM, instrument
26  errors may vary in total magnitude or direction so that error is not always positively correlated with

27  concentration. Analysis of instrument error compared with measured and true (1.e., simulated)

28  concentrations for the Goldman ¢t al. (2010) study suggested that the error was not correlated with either

29 measured or true concentrations. Hence, the instrument error was neither pure Berkson error nor pure

30 classical error, but it probably retained Berkson-like and classical-like characteristics. If instrument error
31  and concentration are positively correlated, then error in the exposure concentration estimates will be

32 larger in locations where there are more prevalent or stronger primary sources or at times when PM

33 cmuissions are higher for a given location. Moreover, if error is positively correlated with concentration,
34 then it would be anticipated that the magnitude of the instrument error is largest at times of day when

35  emissions are highest.

36 Instrumentation bias could be anticipated to influence exposure concentration estimates used in

37  long-term PM exposure studies in some situations. For example, geostatistical or LUR models may
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underestimate exposure concentration when the model is fit using data from samples that have
experienced negative artifacts due to volatility. Ambient temperature and relative humidity would not be
expected to vary greatly within a city. Because climate and ambient sources are more likely to differ

among cities, instrumentation error occurring when warm temperatures exacerbate evaporation could

[ T S S

have a larger influence on the comparison of exposure concentrations among cities.

34.2.4 Model Accuracy and Precision

Error in PM exposure model predictions leads to some error in the health effect estimates from
epidemiologic studies in which they are used. However, the implications of the type of errors depends
upon the application. In statistical models used in epidemiologic studies, spatial, temporal, or

o 0 1 N

concentration biases and errors may align with the health data being used, leading to potential errors and
10  increased uncertainties in the health effect estimates (NRC, 2007).

11 The performance of the exposure models in recreating exposure estimates can impact the ensuing
12 health analyses. LOOCYV is often used to assess the exposure concentration estimates (Section 3.3.2),

13 particularly for LUR. One issue with LOOCYV is that monitoring sites can be clustered, such that

14  removing a monitor that is near other monitors does not “stress” the model, because the value from the

15 nearby monitors will lead to an accurate replacement value. That issue, along with the majority of sites

16  being clustered in urban areas, can lead to seemingly good performance metrics that are not indicative of
17 how well the method can estimate exposure concentrations away from monitoring sites. Given that

18  exposure models are developed, in part, to estimate levels away from observation locations it is

19  informative to have approaches to evaluate how well the method can estimate exposures in such cases.

20 One approach that has been developed is to remove multiple monitors that are spatially grouped such that
21  they are not being influenced by nearby observations (Lv et al., 2016). A related issue arises in LUR

22 modeling. If a hold-out technique uses 90% of the data to both build and train the model, a different set of
23 independent variables may be chosen than those in the full model. Wang et al. (2014) argued that a

24  preferable approach is to build the full model and retrain it with 90% of the data. Wang et al. (2015)

25  found that the LUR model performance (R* ranged from about 0.3 to 0.9 for PM,5) was positively

26 associated with the magnitude of the health effect estimate. Alexeeff et al. (2015) conducted a simulation

27 study using high resolution fields developed from MAIAC satellite data as the “true” field, and developed
28  simulated spatiotemporal ficlds by kriging and using LUR. R? of the kriging and LUR methods ranged

29 from about 0.24 to 0.98. They linked poor performance (e.g., lower R?) with bias in the health effect

30 estimates. Goldman et al. (2011) and Goldman et al. (2010) also found in a simulation study that

31  increased exposure measurement error led to negative bias in the health outcomes and increased
32 uncertainty. These, and related studies, show the potential impact of the accuracy of the exposure

33 concentration metrics on bias and uncertainty in the health effect estimates in an epidemiologic study.
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A major issue in using concentration surfaces estimated by CTMs for epidemiologic analyses is
that the errors in the model inputs [e.g., emissions, (Koo et al., 2013; Xuetal., 2015; Hao and Larkin
2014; Larkin et al., 2014; Paulot et al., 2014; Urbanski et al . 2011; Zhang et al., 2010b), meteorology

(Digar et al., 2011), and surface characteristics] and parameters (¢.g., chemical reaction, thermodynamic,

al.. 2015; Koo etal., 2015; Porteret al., 2015; Hogrefe et al.. 2014; Rao etal., 2014; Appel et al., 2013;
Appel etal.. 2012; Simon et al.. 2012; Napelenok et al.. 2011 Civerclo et al., 2010: Folev et al., 2010;
Zhang et al., 2010b; Swall and Foley, 2009). Meteorological models, which are typically used to provide

inputs to air quality models, have similar issues with inputs and parameters, thus leading to uncertain

output fields that also have errors and uncertainties. Arrandale et al. (2011) also noted that mean bias and

correlation varied by region with distinct spatial patterns. Given the potential for such errors,
understanding how well such models can reproduce PM (including size and components) concentration

fields for exposure or exposure concentration modeling is important.

Errors can be large, particularly when considering individual PM components (¢.g., OC) or size
fractions (e.g., UFPs) (Koo et al., 2015; Stanier et al., 2014; Zhang et al.. 2010b). In terms of model
parameters, this is often due to a fundamental lack of understanding of the processes, for example

knowledge of the chemical reactions and products involving organic compounds or nucleation (Donahue
¢tal., 2013; Shiraiwa et al., 2013; Worton et al.. 2013; Chen et al.. 2011; Donahuc et al.. 2011; Hovle et
al.. 2011: Pierce et al.. 2011; Zhang et al.. 2010a; Kulmala et al.. 2009; Nieminen et al., 2009: Kroll and
Semfeld, 2008; Kuang et al.. 2008; Kulmala and Kerminen, 2008). Koo et al. (2015} conducted an
extensive evaluation of two CTMs (CMAQ and CAMx) for the same domain, and found that the models,

overall, performed similarly for PM. 5, but differences were found upon further investigation

(e.g., performance for individual PM components, and how the errors varied based on region and time).

The Koo et al. (2015) study demonstrated that the same model will perform differently, sometimes

dramatically, depending upon domain and time period such that performance in one application is not
definitive support that performance will be similar in a different application. The limited availability of
sub-24-hour PM mass concentration and component data has inhibited the evaluation of CTMs for
simulating the diurnal variation of PM. Koo et al. (2015) used diurnally varying PM s compositional
information available from SEARCH (Hansen ¢t al., 2006; Hansen et al., 2003) to further assess CMAQ

and CAMx model performance and found that, in addition to a low bias in OC and ammonium, during the

summer the models also simulated a drop during the daytime that was not found in the observations. This
additional bias could impact studies that used temporally finer-scale PM, s exposure concentration

estimates.

Due to the various potential errors in using air quality models to develop exposure concentration
fields, Marmur et al. (2006b) and Marmur et al. (2006a) concluded that the direct use of CTMs in
epidemiologic studies of acute health endpoints would lead to attenuation in the observed outcomes.

Spatially- and temporally-varying biases and errors would also lead to questions of their use in
epidemiologic studies of long-term exposures as well if the fields are not modified (Bravo et al., 2012),
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such as by blending with PM concentrations derived from satellite observations, as discussed in

Section 3.3.3.

3.4.3 Costressor Relationships

To assess the independent effects of PM in an epidemiologic study of health effects, it is
necessary to identify (Bateson et al.. 2007): (1) which copollutants (¢.g., NO», CO, BC) and additional
exposures (¢.g., noise, traffic levels) are potential confounders of the health effect-PM relationship so that

their correlation with PM can be tested and, if needed, accounted for in the statistical model; (2) the time
period over which correlations might exist so that potential confounders are considered appropriately for
the time period relevant for the epidemiologic study design (e.g., pollutants or other factors that are
correlated over the long term might not be important for a short-term exposure epidemiologic study); and
(3) the spatial correlation structure across multiple pollutants, if the epidemiologic study design is for
long-term exposure. Given that a covariate must be correlated with both the exposure and the health effect
to be a confounder, the potential for confounding of PM-related health effects can vary by the health

endpoint of interest.

For copollutants that do show high correlations, copollutant models may be appropriate to adjust
the effect estimate for each pollutant for the potential confounding effects of another pollutant if each

pollutant is associated with the health effect (Tolbert ¢t al.. 2007). If one copollutant is a surrogate for an

ctiologically linked pollutant, copollutant models may attribute the effect to the copollutant measured
with less error, regardless of whether it is the etiologically linked pollutant. In copollutant models where
PM is measured with more error than a copollutant, a differential effect occurs where the health effect
estimate of PM exposure may be lower than the health effect estimate of the copollutant, even if PM is the
true causal agent (Zeger ¢t al., 2000), as discussed in the 2009 PM ISA (U.S. EPA, 2009b). If this occurs,

the health effect related to PM exposure would be underestimated or potentially not detected. Positive

correlation between PM and the copollutant and between the exposure measurement errors of PM and the
copollutant can add more negative bias to the PM health effect estimate. Spatial variability of
concentration differs among the particle size spectrum, and this may cause more exposure measurement
error in PMio-2 s or UFP compared with PM, s (Section 3.4.2 2). Hence, if PM» 5 is measured with less
error than copollutants, it is likely that the effect will be attributed to PM; 5.

This section considers temporal copollutant correlations and how relationships among
copollutants may change in space. Temporal copollutant correlations are computed from the time series of
copollutant concentrations for two different collocated monitors. Temporal correlations are informative
for epidemiologic studies of short-term PM exposure when the sampling interval is less than a month for
cach of the copollutants. Temporal correlations are informative for epidemiologic studies of long-term
PM exposures when sampling intervals are months-to-years. Spatial relationships are evaluated by

comparing within-pollutant variation across space for different pollutants. The following sections review
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1 coexposures that can potentially confound the relationship between a health effect and PM exposure over

2 different temporal and spatial resolutions.

3.4.31 Temporal Relationships among Ambient PM and Copollutant
Exposures

AQS data presented in the 2009 PM ISA (U.S. EPA, 2009b) demonstrated most correlations

between PM- s and gaseous copollutants were typically between —0.2 and 0.8 with average and median

values around 0.2 to 0.5. Correlations between PM, s and PMo-2.5 were observed in a similar range. Given
limited data for PM;o 5 at the time when the 2009 PM ISA was written, correlations between PMig2 s

~3 N W e W

and gaseous copollutants were not presented.

@w

To place the copollutant correlation discussion in the context of the epidemiologic studies, we
9  present the correlation data for the epidemiologic studies in CHAPTER 5, CHAPTER 6, CHAPTER 7

10 CHAPTER 8 CHAPTER 9, CHAPTER 10, and CHAPTER 11 that reported correlations of PMa s,

11 PMio-2s, or UFP with copollutants. Figure 3-7, Figure 3-10, and Figure 3-13 (for PMzs, PMiy 25, and

12 UFP, respectively) plot study data for correlations with gaseous copollutants Os, CO, SO,, NO2, and NOx
13 and with particulate copollutants. More data were available for PM» s compared with PM1o-25 or UFP (as
14 NC, based on the assumption that the majority of particles are smaller than 100 nm), and so Figure 3-7 is
15 divided into four panels for all data combined, acute timescales within 1 hour, short-term timescales

16  between 1 hour and 2 weeks (with most data obtained at a 24-hour timescale), and long-term timescales
17 longer than 2 weeks. Only 24-hour data were available for PM,o-2 5 and UFP correlation data.

18 For acute and short-term timescales (within 1 hour and 2 weeks, respectively), median

19 correlations of PM5 s with copollutants were ordered CO > NO: > SO, > NOx > O; (Figure 3-7). Acute

20 data were relatively sparse but produced median correlations that were lower than those for short-term.
21 Because data were combined across studies, Figure 3-7 includes both Pearson and Spearman correlations.
22 Short-term correlations for CO and NQO- reached as high as R = 0.9, while roughly 20% of the short-term
23 correlations between PMs s and O3 were negative. Correlation data between UFP and Os were limited to

24 one study (Kearnev et al., 201 1), and three of four reported correlations were negative in contrast to the

25 mostly positive correlations between PMs s and Os (Figure 3-13). Data for short-term correlations of PMs 5
26 with PMio2 5 and UFP were around R = 0.5, although data were also sparse for these comparisons.

27  Median correlations of PMio-2 s and gases ranged between R = 0.3 and R = 0.5, although limited data were
28  available for these comparisons. Correlations of PMio s with CO and NO, were around R = 0.5,

29  potentially indicating some commonality of sources, such as traffic emissions of CO and (indirectly) of
30 NO» with PMio-25 generated by brake dust (Section 2 4.2). For short-term correlations of UFP with

31  copollutant gases and particles, median correlations were 0.5 for NO» and lower for everything else. It is
32 possible that low correlations could be related to the short lifetime of UFP relative to other PM size

33 fractions. However, because limited data for UFP correlations were available, few conclusions can be
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1 drawn. Because data were combined across studies, Figure 3-13 also includes both Pearson and Spearman

[\

correlations.

Median long-term correlations (i.c., longer than 2 weeks) between PMa s and copollutants follow
a pattern opposite to that for short-term correlations: O3 > NOx > SO, > NO; > CO (Figure 3-7). Median
correlations were between R =0 and R = 0.2. Limited quantity of data existed for long-term correlations
between PM- s and copollutants and no data existed for long-term correlations of PMa s with PMio-» 5 or

UFP. Moreover, overlapping 25th-to-75th percentile and 5th-to-95th percentile intervals reduce

¢~ AN W e W

confidence in the comparison.

9 For comparison to the epidemiologic data, short-term (24-hour average) correlations of PM» s and
10 copollutants and of PMi¢-2 5 and copollutants were studied using air quality data from collocated monitors
11 reported within the U.S. EPA AQS repository system during 2013-2015. 438 sites met the 75% data
12 completeness criteria presented in Section 2.5.1.1. Pearson correlations were used to evaluate temporal
13 correlations among ambient PM, s concentrations and NAAQS copollutant concentrations. Figure 3-8
14 displays the distribution of correlations between NAAQS copollutants and 24-hour PM: 5 for annual data
15 for 20132015, and Figure 3-9 displays the distribution of correlations broken down by season. For CO,
16  SO,, and NO-, 1-hour daily max concentrations are used, while for O, 8-hour daily max concentrations
17 are considered. Annual and seasonal copollutant correlation plots for 24-hour PMio-2 5 are provided in

18 Figure 3-11 and Figure 3-12.

19 Across seasons, 24-hour average PM, s and PM1o-» 5 concentrations reported in the AQS
20 consistently have the highest correlations with PMio concentrations (median Pearson R = 0.7-0.8 for
21  PM:s, median Pearson R = 0.7-0.9 for PM o 25) (Figure 3-9, Figure 3-12). This could occur if PM, s were

22 a large contributor to PMio, if PM, s and PMio-2 5 were of the same source, or if PM s and PMio 25 were

23 of different sources whose emussions were coordinated in time. Correlations between PMa 5
24 concentrations and PMio—5 concentrations are lower than either size fraction’s correlation with PMyo
25  across seasons {median Pearson R = 0.2—0.5), with lowest correlations m winter. This is consistent with

26  observations from the epidemiology literature (Figure 3-7, Figure 3-10), although data for PMio-2s

28  correlations, because data are combined across studies. In the summer and spring, correlations of PM; 5

29 with SO,, NO», and CO are all roughly  =0.2. In the fall and winter, however, correlations of PM- s are
30 ordered as CO > NO, > SO, consistent with correlations reported in the epidemiology literature (Figure
31  3-9). Higher correlations of CO and NGO, with PM, s may be indicative of combustion sources. Correlation
32 of PM:;s and O; is highest during the summer (median Pearson R ~ 0.45) and is negative during the

33 winter. High summer correlations could reflect photooxidation to produce simultaneously higher levels of
34 Osand secondary PM (Section 2.3.2.3), (U.S. EPA, 2013). Median correlations of PMjo-2 5 with SO,

35 NO, CO, and Os were all in the range of R = 0.1-0.3 across seasons. This may reflect the origin of

36 PMig 25 largely as dust rather than by combustion, other industrial processes, or photochemistry.
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Correlation data from epidemiology studies (Figure 3-10) are higher for CO and NO», but only a limited

number of studies reported those correlations.
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Figure 3-7 Correlations between PMz.s and copollutants for all data combined
(top left), timescales within 1 hour (top right), short-term
timescales within 2 weeks (bottom left), and long-term timescales
greater than 2 weeks (bottom right).
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CO = carbon monoxide; NO; = nitrogen dioxide; O3 = ozone; PMig-25 = particulate matter with a nominal aerodynamic diameter less
than or equal to 10 um and greater than 2.5 pm; PM,, = particulate matter with a nominal aesrodynamic diameter less than or equal
to 10 um; S = sulfur.

Note: Shown are the median (line), mean (circle), and inner-quartile range (box), 5th and 95th percentile (whiskers) and extremes
(X's).

Figure 3-8 Distribution of Pearson correlation coefficients for annual 24-hour
average concentration of PM2.5 with collocated copoliutants from
the Air Quality System during 2013-2015.
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CO = carbon monoxide; NO, = nitrogen dioxide; O3 = ozone; PMig-25 = particulate matter with a nominal aercdynamic diameter less
than or equal to 10 um and greater than 2.5 pm; PM,, = particulate matter with a nominal aerodynamic diameter less than or equal

to 10 uym; S = sulfur.

Note: Shown are the median (line), mean (circle), and inner-quartile range (box), 5th and 95th percentile (whiskers) and extremes

(xX’s).

Figure 3-9

Distribution of Pearson correlation coefficients for comparison of

seasonal 24-hour average concentration PMz.s with collocated
copollutants from the Air Quality System during 2013-2015.
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Note: Only 24-hour data were available for PM-25. Based on epidemiologic studies reporting correlations in CHAFTER 5,
CHAPTER 6, CHAPTER 7, CHAPTER 8, CHAPTER 9, CHAPTER 10, and CHAPTER 11.

Source: Permission pending, (Chen et al. (2015); Cheng et al. (2015); Michikawa et al. (2015); Qiu et al. (2014); Raza et al. (2014);
Alessandrini et al. (2013); Qiu et al. (2013); Rosenthal et al. (2013); Wichmann et al. (2013); Qiu et al. (2012); Atkinson et al.

(2010)).

Figure 3-10 Pearson correlations between PM1o-25 and copollutants for
short-term exposures.
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CO = carbon monoxide; NO; = nitrogen dioxide; O3 = ozone; PMig-25 = particulate matter with a nominal aerodynamic diameter less
than or equal to 10 um and greater than 2.5 pm; PM,, = particulate matter with a nominal asrodynamic diameter less than or equal
to 10 um; S = sulfur.

Note: Shown are the median (line), mean (circle), and inner-quartile range (box), 5th and 95th percentile (whiskers) and extremes
(X's).

Figure 3-11 Distribution of Pearson correlation coefficients for annual 24-hour
average concentration of PM1o-2.5 with collocated copollutants
from the Air Quality System during 2013-2015.
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CO = carbon monoxide; NO, = nitrogen dioxide; O3 = ozone; PMig-25 = particulate matter with a nominal aercdynamic diameter less
than or equal to 10 um and greater than 2.5 pm; PM,, = particulate matter with a nominal aerodynamic diameter less than or equal

to 10 uym; S = sulfur.

Note: Shown are the median (line), mean (circle), and inner-quartile range (box), 5th and 95th percentile (whiskers) and extremes

(xX’s).

Figure 3-12

Distribution of Pearson correlation coefficients for comparison of
seasonal 24-hour average concentration of PM1o-2.5 with
collocated copoliutants from the Air Quality System during

2013-2015.

Limited data were available from the peer-reviewed literature for correlations of UFP

concentration with concentrations of other PM size fractions or of gases (Figure 3-13). Median Pearson

correlations around R = 0.5 were reported for UFP with PM; 5 and with NO, and NOx. Without more data
to identify copollutant relationships for UFP, it is difficult to interpret these data.
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Note: Only 24-hour data were available. Based on epidemiologic studies reporting correlations in Chapters 5-11.

(2010); Belleudi et al. (2010).

Figure 3-13 Correlations between UFP and copollutants for short-term
exposures.

3.4.3.2 Spatial Relationships among Ambient PM and Copollutant
Exposures

When an epidemiologic study design relies on spatial contrasts to draw conclusions, such as for
an epidemiologic study of long-term exposure, unmeasured spatial correlation between copollutants may
lead to positive bias in the health effect estimate for cach of the pollutants included in the model. Pacicrek
(2010} performed simulations and analyzed case study data (of the relationship between birth weight data
and BC concentrations in eastern Massachusetts) to test the effect of spatial errors on health effect
estimates in long-term exposure epidemiologic studies. In this study, Paciorek (2010} selected BC as a
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PM component because it is spatially variable. He identified unmeasured spatial confounding as a key
driver in biasing health effect estimates in a spatial regression. Paciorek (2010} maintained that bias can
be reduced when variation in the exposure concentration metric occurs at a smaller spatial scale than that
for more spatially-variable PMio-2 5, UFP, and BC than for PM: 5, for which less spatial error would be

anticipated.

3.4.3.3 Personal and Indoor Relationships between PM and Copoliutant
Exposures

No new studies on relationships among personal and ambient copollutants had been performed
since the 2009 PM ISA (U.5. EPA, 2009b). Those data are presented graphically in Figure 3-14, Figure 3-
15, and Figure 3-16. Figure 3-14 displays copollutant correlations among personal exposures to PMs s,
toluene, Os, and CO. The data from Chang ¢t al. (2000) were obtained in Baltimore, MD 1n the summer of

1998 and winter of 1999. Median correlations were 0.39 for the personal-personal relationship for PM: s

versus CO, 0.32 for PM: 5 versus toluene, and 0.045 for PM, 5 versus Os. Correlations were highest when
personal measurements were obtained outdoors away from the road during the summer for PM s versus
O3 and PM: 5 versus CO during the summer and for PM» 5 versus toluene during the winter. The higher
correlations obtained away from the road may reflect the secondary nature of much of the measured
PM:s.

Median personal-ambient slopes between PM» s and gaseous copoliutants are generally between 0
and 0.5, as shown in Figure 3-15. These data were obtained from Koutrakis et al. (2003}, Sarnat et al.
(2005), Sarnat ¢t al. (2001). and Sarmat et al. (2006b) from Boston, MA, Baltimore, MD, and

Steubenville, OH. Median relationships of personal PM, s exposure with ambient gaseous copollutant

concentrations were higher with more variability than those of personal SO.% exposures with ambient gas
concentrations, indicating that nonambient PM, 5 exposure may have amplified these relationships and
added uncertainty. Data were more limited for relationships between personal EC concentration and
ambient gaseous copollutant concentrations, but these tended to be lower as well. Greater variability
occurred in some cases for the relationships between personal exposure to gaseous copollutants and

ambient concentrations of PM, s, EC, and SO.*", perhaps as a result of limited amounts of data.

Median slopes for the relationship between personal exposure to PM or SO4* with gaseous
copollutants (NO-, Os, and SO,) tended to be between 0 and 0.5 (Figure 3-16). The exception was the
relationship between PM2 s and SO, which was negative but of similar magnitude. These data were
obtained from Koutrakis et al. (2005), Samat et al. (2005), and Sarmat et al. (2001). A slight reduction in

median slope along with smaller data intervals were observed when personal SO.* exposure was used in

licu of personal PM. s exposure, suggesting that the nonambient component of personal exposure may
have influenced these relationships. Nonambient sources of O3 and SO» are much less prevalent, so it is
unlikely that they would have influenced their respective relationships. Although NO-, does have indoor
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1 (indirect) sources, variability in these relationships was lower than for the other gaseous copollutant

2 exposures.
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Source: Permission pending, (Chang et al., 2000).

Figure 3-14 Correlations between personal exposure to PMzs mass and
personal exposure to gases.
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Source: Permission pending, Sarnat et al. (2006h); Koutrakis et al. (2005); Sarnat et al. (2005); Sarnat et al. (2001).

Figure 3-15 Slopes for personal-ambient relationships. Top: Personal
exposure to gaseous copollutants related to ambient exposure to
PMz5 mass or EC or SO4% components.
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Figure 3-16 Slopes for personal-personal relationships between PM2s mass or
S04* component and gaseous copollutants.
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3.4.3.4 Traffic-related Noise

The 2009 PM ISA (U.S. EPA, 2009b) did not consider the relationship of PM with traffic-related
noise levels. Recent evidence is inconsistent regarding the correlations of PM concentrations with traffic

and noise levels (HEL 2010). There are differences among the studies exploring the health effects of PM

and noise regarding size cut of PM measured, road type, and surrounding features. Hence, the role of

traffic and noise as confounders or independent variables in the relationship between health effects and

DN U s W N e

PM exposure is unclear.

~J

Several studies have examined the relationship of traffic-related noise with PM concentrations.

Kheirbek et al. (2014) added noise level meters to the dense New York, NY monitoring project described
9 inRossetal (2013) and observed that 1-weck average noise level (measured as dB[A]), obtained at

10 60 locations during Fall 2012, correlated with Pearson R = 0.45 for PM, 5 concentration and Pearson
11 R=0.62 for BC concentration. Boogaard et al. (2009) measured UFP, PM s, and noise (measured as

12 dBJA}) while bicycling on scripted 10- to 20-minute routes for ten cities in The Netherlands and found a
13 median correlation of Pearson R = 0.34 across cities for UFP and noise while the median correlation was

14 Pearson R = 0.009 for PM, s and noise. Gan et al. (2012b) calculated the correlations among air pollutants

15 and noise from road traffic and aircraft using 5-minute data from 103 sites in Vancouver, BC, Canada

16  during 2003 (dates not stated). They observed lower correlations for PM2 s concentration with road traffic
17 noise (Spearman R = 0.14) compared with that for BC (Spearman R = 0.45). However, correlations

18  between PM, s and aircraft noise were higher (Spearman £ = 0.31) than for BC (Spearman £ =—0.07).

19 Over a 5-year average, Gan ct al. {2012a) reported the correlation between PMa 5 concentration and noise

20 from road traffic to be Spearman R = 0.14. Reported correlation of 5-year average BC concentration with
21 BC concentration had a Spearman R = 0.44. These findings are consistent with the short-term
22 observations reported in Gan ¢t al, (2012h).

23 Ross et al. (2011} also examined relationships of different frequency noises with PM, s and EC

24 concentrations using continuous monitors collecting 48,000 samples per second for six 24-hour periods in
25 August 2009. Ross et al. (2011) measured the relationships between traffic level, noise, and

26  concentrations of PM2s and EC in New York, NY as part of the Ross ¢t al. (2013) study. Unweighted

27  noise of all frequencies was uncorrelated with PM; s concentration (Spearman R = 0.20) but correlation

28  increased for EC concentration (Spearman R = 0.35) for all times. Correlations were higher for medium
29 frequency noise (PM»s: Spearman R = 0.20; EC: Spearman R = 0.39) compared with high frequency

30 noise (PMss: Spearman R = 0.14; EC: Spearman R = 0.15) but were similar for low frequency noise

31 (PMas: Spearman R = 0.19; EC: Spearman R = 0.32). Correlations between PMa s and low frequency

32 noise (Spearman R = 0.3) were higher during rush hour than at night for low frequency noise or for any
33 time for medium and high frequency noise. At night, high frequency noise had a higher correlation with

34  EC concentration (Spearman R = 0.4).

35 Distance to road has also been observed to influence the relationship between noise and PM
36 concentrafion as a surrogate for exposure concentration. The Gan ¢t al. (2012b) study described above
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also reported Spearman correlations between S-minute average. A-weighted equivalent noise (1.¢., noise
level that is adjusted to noise perception by the human ear) and concentrations of PMz s and BC for
buffers of 50 m and 150 m of a highway (defined as Al and A2 roads) and a major road (defined as Al,
A2, and A3 roads). Correlations for PM; 5 and noise were Spearman R = 0.02 within 50 m of the highway,
Spearman R = 0.03 within 150 m, and Spearman R = 0.17 when further than 150 m. For a major road,
correlations for PMz s and noise were Spearman R = 0.24 within 50 m, Spearman R = 0.15 within 150 m,
and Spearman K = 0.14 when further than 150 m. Results for correlations between BC and noise were
higher than for correlations between PM; s and noise, and they were more consistent between highways
(within 50 m: Spearman R = 0.17, within 150 m: Spearman R = 0.38, further than 150 m: Spearman

R =0.41) and major roads (within 50 m: Spearman R = 0.26, within 150 m: Spearman R = 0.46, further
than 150 m: Spearman R = 0.31). Allen et al. (2009) studied the relationship between UFP concentration,

and 5-minute average A-weighted equivalent noise for 105 locations in Chicago, IL and Riverside, CA
using measurements taken in December 2006 and April 2007. After adjustment for regional unspecified
air pollutant concentration gradients, correlation of UFP with noise was Pearson R = 0.31 for Chicago and
Pearson R = 0.41 for Riverside. Correlation of noise with UFP concentrations was higher within a 100-m
buffer of the road (Chicago: Pearson R = 0.37; Riverside: Pearson R = 0.58) compared with outside the
buffer (Chicago: Pearson R = 0.08; Riverside: Pearson R = 0.50).

344 PM Composition and Exposure Assessment

Compositional differences in ambient PM and ambient PM that has infiltrated indoors were
discussed briefly in the 2009 PM ISA (U.S. EPA, 2009b). Several studies cited in the 2009 PM ISA found

that SO4*~ comprised the largest proportion of ambient PM; s exposure in studies from the eastern U.S.,

while a study in Denver found NOs ™ to be the largest contributor to PM» s. Studies of differential
wmfiltration of PM; s by BC or OC found that BC contributed more to indoor PM: s compared with OC.
2013-2015 composition data across the U.S. shows that, while there is still more SO4*" in the east

compared with the west, OC now is the most prevalent component of PM» s in many arcas across the

on studies of ROS exposure in the literature.

3.4.41 Composition

Select epidemiologic studies of the health effects of PM exposure have examined potential
associations between health effects and exposure to PM components (CHAPTER 5, CHAPTER 6
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CHAPTER 7, CHAPTER 8, CHAPTER 9, CHAPTER 10, and CHAPTER 11). These studies compare
the effect estimates for exposure to PM components with health effect estimates for exposure to total PM,
measured as ambient mass concentration (MC), NC, or personal exposure concentration. This section

presents relationships between concentrations of total PM with PM components.

Figure 3-17 displays correlations for 24-hour ambient PM, s mass concentration with mass
concentration for select components of PM- s measured from the AQS during 2013-2015 on an annual
ordered as OC > SO4* > EC > NO;™ > Cl > Si, with correlations above Pearson R = 0.5 for OC, SO.*,
EC, and NO;". Sulfate, NOs ™, and OC are most commonly a product of chemical reactions of air
pollutants in the atmosphere, and PM produced during atmospheric chemistry is often in the fine size
range (Section 2.2). The median correlation of PM; s with Cl and Si was approximately Pearson R =0.2.
On a seasonal basis, correlations between PM; s and NOs™ were lower during the spring and summer
months, perhaps coinciding with less home heating fuel use during the summer. In the peer-reviewed

concentration surrogates, were similarly high (fto et al.. 2011; Ostro et al., 2010; Ostro et al., 2009), but

much greater variability in correlations were observed for ambient OC and more so for EC or BC (which
were combined for presentation purposes). Median correlations were around 0.5 for most trace metals, but
higher correlations were observed for S, Zn, and V in New York (Ito et al., 2011) and Southern California
(Ostro et al., 2010; Polidori et al., 2009). The higher correlations for S are likely explained by SO4*". Ito
gtal, (2011) and Polidori et al, (2009) attributed elevated correlations with Zn and V to residential oil

combustion.
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Figure 3-17 Distribution of Pearson correlation coefficients for annual 24-hour

average PM:2s mass concentration with mass concentration of
PM2.s5 components from the Air Quality System during 2013-2015.
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Figure 3-18 Distribution of Pearson correlation coefficients for comparison of

seasonal 24-hour average total PM2s mass with mass
concentration of PMzs components from the Air Quality System
during 2013-2015.
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Source: Permission pending, Polidori et al. (2009); lto et al. (2011); Ostro et al. (2009); Raysoni et al. (2013); Zhang et al. (2016);
Delfino et al. (2013); Delfino et al. (2010); Cstro et al. (2010).

Figure 3-19 Distribution of Pearson correlation coefficients for annual 24-hour
average total PM2s mass concentration with mass concentration
of PM2.s components from the peer-reviewed literature during
2013~2015.
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For SO, OC, NOs™, and EC, site-specific correlations range from near Pearson R = 1 down to

near Pearson R = 0 (Figure 3-17). This suggests spatial variability of the correlations between PM» s and

each component (Figure 3-20). Maps of Pearson correlations at AQS sites measuring PM» s and

components illustrate the level of variability for the four components. Correlations between PM» s and

SO.* are highest in the northeastern and Midwestern portions of the U.S. Correlations between PM: s and

NOs; are highest in the West and markedly lower throughout the Southeast and Midwest. Correlations

between PM- s and EC appear highest in the West, possibly due to the influence of wildfire on PM; s

concentrations (Section 2.5.1.1.6).

Figure 3-20

E
< 0.3 04 08 0.8 1.0

Maps illustrating national-scale variability of Pearson correlation
coefficients for comparison of seasonal 24-hour average total
PMzs mass concentration with mass concentration of PMz.s
components from the Air Quality System during 2013-2015.
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Figure 3-21 displays annual correlations for 24-hour ambient PMio-2 5 mass concentration with
mass concentration for select components of PMio-2 5 measured from the AQS during 2013-2015, and
Figure 3-22 displays seasonal correlations. Median correlation of PMjo-2 5 mass concentration with Si was
slightly lower than Pearson R = 0.7, while median correlations of PMjo-2 s mass concentrations with the
other PM,0-2 5 components were between Pearson K = 0 and Pearson R = 0.3. The difference between
correlations for Si with those for the other components holds across seasons, with the highest correlation
for S1 and lowest correlations for all other components evident during the fall months (Figure 3-22). The
higher correlation of PMio-2 s mass concentration and Si in PMio-2 5 was likely due to the influence of
dust, particularly in the Southwestern U.S. (Section 2.5). Figure 3-24 shows higher correlations in the
Southwest, in support of this claim. Data for correlations between ambient PMo-» 5 mass concentration
and Si in PMio 25 (for each of these studies, ambient PMiy > 5 and components were measured by
fixed-site monitors outside the location where personal samples were obtained, but no correlations were

reported for personal samples) were not available in the literature for comparison (Raysoni et al., 2013;

Delfino et al.. 2010; Polidori et al., 2009), but median correlations for components reported were all less

than Pearson R = 0.5 (Figure 3-23).
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Figure 3-21 Distribution of Pearson correlation coefficients for annual 24-hour
average total mass concentration of PM1o-2.5 with mass
concentration of PM1o-2.5 components from the Air Quality System
during 2013-2015.

SECTION 3.4: Exposure Assessment and Interpretation of Epidemiologic Study Results
August 2018 3-97 DRAFT: Do Not Cite or Quote

ED_002220_00002287-00358



January - March

April - June

Sulfate -

Nitrate —

Organic Carbon —
Elemental Carbon -
Chioride —

Silicon —

. o I N R e
Bt L. Bt

% P - MR Y0 X

M e —— @ b —— e

O

K e ] @ |

X el B leeemwXs X

-1.0

-0.5

‘ T
0.0 G.5

July - September

-0.5

October - December

Sulfate
Nitrate -
Organic Carbon

WA M| B RN
SR S

o ——{ @ 00 X

ot T8 e e
K AN X Y.ZN———-—-‘i : E——M‘O»»\X’&f.

Elemental Carbon B e oo G e e HOOK X X S I e Y
Chioride — Mo~ @ e KX ] e o] T e e e e SO
Silicon - SUNSSN S T B e T}
40 <05 00 05  1.0-10 05 00 05 1.0

Distribution of Pearson correlation coefficients for comparison of
seasonal 24-hour average total PM1o-2.5 mass concentration with
mass concentration of PM1o-2.5 components from the Air Quality
System during 2013-2015.

Figure 3-22
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Figure 3-23

Distribution of Pearson correlation coefficients for annual 24-hour

average total PM1o-2.5 mass concentration with mass
concentration of PM10-2.5 components from the peer-reviewed

literature.
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Figure 3-24 Map illustrating national-scale variability of Pearson correlation
coefficients for comparison of seasonal 24-hour average total
PM1o-2.5 mass concentration with mass concentration of Si in
PM1o-2.5 from the Air Quality System during 2013-2015.

Exposure to UFP composition is informed by considering data for correlations of mass
concentration for PM smaller than 250 nm (PMs1s). These samples were measured using a cascade
impactor, with concentrations of PMy s components were calculated based on ambient fixed-site
measurements for monitors placed outside retirement communities as surrogates for exposure

concentration in Polidori ¢t al. (2009) and Delfino ¢t al. (2010), as shown in Figure 3-25. The highest

median correlation was between PMo 25 and V (Spearman R = 0.8), which tends to be present in heating

oil and industrial waste (Polidori et al.. 2009). Correlation between PMy 25 and V was near Spearman

R =1 in the cool season and near Spearman R = 0.7 during the warm season, which is consistent with
heating oil use. Medium correlations near Spearman R = 0.5 were reported for several components,
including S (correlations with SO4%" were not reported at the PMo 25 size cut), Pb, OC, Ni, Na, Mo, Fe,
EC/BC, Ba, and Al. Both studies took place in 2005-2007, and ultra-low sulfur diesel fuel was phased in
between 2006 and 2010. Moderate correlations for PMo 25 with S, EC/BC, OC, and Ba could be related to
traffic (Polidori et al.. 2009).
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Figure 3-25 Distribution of Pearson correlation coefficients for annual 24-hour

average total PMo.2s mass concentration with mass concentration
of PMo.2s components from the peer-reviewed literature.

3.44.2 Reactive Oxygen Species

SECTION 3.4: Exposure Assessment and Interpretation of Epidemiologic Study Results
August 2018 3-101 DRAFT: Do Not Cite or Quote

ED_002220_00002287-00362



~3 N WU B W N e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

as a surrogate for oxidative stress. Oxidative stress and inflammation may be initiated by PM exposure,
when a target site does not have enough antioxidant reserve to counteract the ROS. Oxidative stress can
occur directly through redox reaction, or it can occur indirectly, where redox-inactive metals can form
complexes with antioxidants so that the cell is then vulnerable to oxidation. The dithiothreitol (DTT)
assay for measuring ROS inform PM’s ability to cause oxidative stress directly [see Cho et al. (2005)

Section 3.3.1.2]. Macrophage ROS assays [see Landreman et al. (2008), Section 3.3.1.2] provide a model

of both direct and indirect oxidative stress, because both may occur in the model cell.

and DTT assay results with mass concentration of PM: s, prevalent components (EC, OC, SO, NOs ",
and NH."), and sclect trace metals (Cu, Fe, Ni, V, Zn) (Bates et al., 2015; Fang et al., 2015; Verma et al..

2009; Hu et al . 2008). Correlations between PM» s mass concentration and DTT activity ranged from

Pearson R = 0.49 to 0.88. No studies presented correlations between PM- s mass and ROS activity based
on the macrophage ROS assay, and limited data were available for the components presented. Most
correlations were greater than 0.3 for EC, OC, SO4*, NO;™, and NH.". For trace metals, correlations
ranged from positive to negative, where negative correlations imply that the ROS activity goes down with
increasing concentration of the PM components or vice versa. In most cases, boxplots overlapped for the
DTT and macrophage ROS assay, suggesting that both types of assay results covary similarly with
measures of concentration for PM; s components, despite the inability of DTT to capture indirect
oxidation processes. These findings suggest that mass concentration of ambient PM» s components may
mform epidemiologic studies of oxidative stress and related effects. However, oxidative potential
approaches are limited as a model of oxidative stress, because they do not reproduce the oxidative stress
mechanisms. Moreover, macrophage ROS assay data are needed to correlate with ambient PM» s mass
concentration to consider if ambient PM- s mass concentration is associated with direct and indirect ROS

activity.
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PM, s = particulate matter with 50% aerodynamic diameter less than a nominal diameter of 2.5 uym; EC = elemental carbon,;

OC = organic carbon; SO, = sulfate; NO;™ = nitrate; NH,* = ammonium; Cu = copper; Fe = iron; Ni = nickel; V = vanadium;

Zn = zinc.

Note: For each element, correlations obtained through the dithiothreitol assay are shown in orange at the bottom of each box and
correlations obtained through the reactive oxygen species macrophage ROS assay are shown in light blue at the top of each box.

Source: Permission pending, Bates et al. (2015), Fang et al. (2015), Hu et al. (2008), Verma et al. (2009).

Figure 3-26 Pearson correlations of ambient air measures of oxidative
potential with PM2.s mass and PM2.s components.

Personal exposure measurements were correlated to ROS activity for three studies of PM

exposures in a school (Delfino et al., 2013) and retirement communities (Zhang et al., 2016; Delfino et

al.. 2010). In the school study, correlations ranged from Spearman R = 0.77 to 0.85 for the DTT assay’s
relationship to PM, s mass, EC, OC, and water-soluble OC exposure concentrations. Similarly,
correlations ranged from Spearman R = 0.66 to 0.86 for the same components for the macrophage ROS
assay’s relationship to PM: s mass, EC, OC, and water-soluble OC exposure concentrations. The first
retirement home study occurred between 2005 and 2007 and included Spearman correlations of

macrophage ROS activity with PMio 25, PM2 5625, and PMo s mass exposure concentrations, along with
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NC and components of EC, OC, BC, primary OC (POC), and secondary OC (SOC). Correlations of
macrophage ROS activity with PMio-2 5 and PM25-025 were Spearman R = 0.09 and 0.07, respectively.
Correlations of ROS activity with PM »s mass exposure concentration (Spearman R = 0.41) and for NC
(Spearman R = 0.23) were higher by comparison. EC, OC, BC, and POC had correlations of Spearman
R=10.3110 0.40, while the correlation for SOC with ROS activity was 0.08.

Assays to measure ROS activity were recently evaluated for particles near the UFP size range.
Zhang ¢t al. (2016) correlated ROS activity of particulate matter smaller than 180 nm (PMy5) or of

particulate matter between 180 and 250 nm (PMo2s-0.15) with PMs s, BC, and components’ exposure
concentrations within the PMo1s and PMos-0.15 size ranges. Correlation was Spearman R =—0.17 and
0.05, respectively for the DTT and macrophage ROS assays, for the correlation of PM» s exposure
concentration with ROS activity of PMy 15. Correlation was Spearman R = 0.20 and 0.45 for the
correlation of PMa s exposure concentration with ROS activity of PMo 25015, so that ROS activity of
PMo 25-0.15 correlated more with PM» s exposure concentration than did ROS activity of PMos.
Correlations among components of PMo 15 exposure concentrations were higher for ROS activity of
PMoy 15, but that pattern did not hold for ROS activity of PMo2s-0.15. Additionally, larger differences were
observed when correlations between exposure to mass concentration and ROS activity were measured by
DTT (for DTT of PMy s, Spearman R = 0.50 to 0.86, and of PMg 25015, Spearman £ = 0.25 to 0.62) than
when they were measured by the macrophage ROS assay (for ROS of PMg 15, Spearman £ =—0.02 to
0.45, and of PMoy2s-015, Spearman R = 0.09 to 0.41). This may imply that for PM, 25, mass exposure
concentration of components may be associated with direct redox activity but not with indirect oxidation
via antioxidant complexation. No correlations of PMo 2s-0.1s or PMo 15 total mass exposure concentration
were provided in the Zhang et al. (2016) study. However, the Delfino et al. (2010) study did provide
correlation data for PMo s and NC and found low-moderate correlations (Spearman R = 0.41 for PMo 25

and Spearman R = 0.23 for NC), consistent with the correlations of the PMg 15 and PMg 25015 components’
mass exposure concentrations with the macrophage ROS assay results. Hence, multiple studies indicate

that the macrophage ROS assay is a reliable indicator of oxidative potential.

3.4.5 Influence of Exposure Errors on Results from Epidemiologic
Studies of Different Designs

Exposure measurement error, which refers to the biases and uncertainties associated with using
Exposure Terminology), can be an important contributor to error in epidemiologic study results.
Time-series studies assess the daily health status of a population of thousands or millions of people over
the course of multiple years (i.e., thousands of days) across an urban area by estimating people's exposure
using a short monitoring interval (hours to days). In these studies, the community-averaged concentration
of an air pollutant measured at ambient monitors is typically used as a surrogate for individual or

population ambient exposure. In addition, panel studies, which consist of a relatively small sample
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(typically tens) of study participants followed over a period of days to months, have been used to examine
the health effects associated with short-term exposure to ambient concentrations of air pollutants
{e.g., Delfino et al. (1996)}]. Panel studies may also apply a microenvironmental model to represent

exposure to an air pollutant. A longitudinal cohort epidemiologic study, such as the American Cancer
Society (ACS) cohort study, typically involves hundreds or thousands of subjects followed over several

vears or decades [e.g., Jerrett et al. (2009)]. Ambient concentrations are generally aggregated over time
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and by community as exposure surrogates.

Exposure error can bias epidemiologic associations between ambient pollutant concentrations and

health outcomes and tends to widen confidence intervals around those estimates (Sheppard et al., 2003;

10 Zegeretal., 2000). The importance of exposure error varies with study design and is dependent on the

11 spatial and temporal aspects of the design. Other factors that could influence exposure estimates include
12 topography of the natural and built environment, meteorology, instrument errors, use of ambient PM

13 concentration as a surrogate for exposure to ambient PM, and the fact PM is one part of a complex

14 mixture of pollutants. The following sections will consider various sources of error and how they affect

15 the interpretation of results from epidemiologic studies of different designs.

3.4.5.1 Short-Term Exposure Studies

34511 Time-Series Studies

16 As discussed in the 2009 PM ISA (U.S. EPA, 2009b), in most short-term exposure epidemiologic
17 studies, the health effect endpoint is modeled as a function of ambient exposure, E., which is defined as

18 the product of C, and «a, a term encompassing time-weighted averaging of microenvironmental exposures
19 and infiltration of PM (Section 3.2.2, conceptual model). Time-series epidemiologic studies capturing the
20 exposures and health outcomes of a large cohort frequently use the ambient concentration at a fixed-site
21  monitor or an average of ambient concentrations across monitors as a surrogate for E, in a statistical

22 model (Strickland et al., 2011; Wilson et al., 2000). This is necessary due to the infeasibility of measuring

23 personal exposures for studies involving thousands of participants. Moreover, for time-series
24 epidemiology studies of short-term exposure, the temporal variability in concentration is of primary

25 importance to relate to variability in the health effect estimate (Zeger et al., 2000). C, can be an

26  acceptable surrogate if the ambient monitor captures the temporal variability of the true air pollutant

27  exposure. Spatial varnability in PM concentrations across the study area could attenuate an epidemiologic
28  health effect estimate if the exposures are not correlated in time with C, when ambient monitoring is used
29  to represent exposure in the statistical model. If exposure assessment methods that more accurately

30 capture spatial variability in the concentration distribution over a study arca are employed, then the

31  confidence intervals around the health effect estimate may decrease.
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In a time-series study of ED visits for cardiovascular disease, Goldman et al. (2011) simulated the

effect of classical and Berkson errors due to spatiotemporal variability among ambient or outdoor (i.¢., an
ambient monitor situated outside the home) air pollutant concentrations over a large urban area. For
24-hour average PM s, the relative risk (RR) per unit mass was negatively biased in the case of classical
error (1.0094 compared to the base case of 1.0139) and negligibly positively biased in the case of Berkson
error (1.0144). Negative bias means that the health effect estimate underestimates the true health effect.
The 95% confidence interval range for RR per ppm of PM1 s was wider for Berkson error (0.0144)
compared with classical error (0.0097). Similar results were obtained for PM, s components (S04, NO; ',
NH.", EC, and OC).

NoRie T B R T IS S O R

10 Recent studies have explored the effect of spatial exposure error on health effect estimates to test

11 the appropriateness of using ambient monitoring for time-series studies. Goldman ¢t al. (2010} simulated

12 spatial exposure error based on a semivariogram function across monitor sites with and without temporal
13 autocorrelation at 1- and 2-day lags to analyze the influence of spatiotemporal variability among ambient
14  or outdoor concentrations over a large urban arca on a time-series study of ED visits for cardiovascular
15 disecase. A random term was calculated through Monte Carlo simulations based on the data distribution
16  from the semivariogram, which estimated the change in spatial variability in exposure with distance from
17 the monitoring site. The average of the calculated random term was added to an ambient monitoring time
18  series (considered in this study to be the base case) to estimate population exposure to PM 5 subject to
19 spatial error. For the analysis with temporal autocorrelation considered, RR per ppm for 24-hour average
20 PM. s dropped slightly to 1.0126 (95% CI: 1.0113, 1.0139) when it was compared with the ambient

21 monitor RR per ppm = 1.0139 *! When temporal autocorrelation was not considered, RR per unit mass
22 similarly dropped to 1.0123 for 24-hour average PM; 5. The results of Goldman et al. {2010) suggest that

23 spatial exposure error from use of ambient monitoring data results in biasing the health effect estimate
24 towards the null to underestimate the true health effect, but the magnitude of the change in effect was
25 small.

26 In another study analyzing the influence of spatiotemporal variability among ambient or outdoor

27  concentrations over a large urban area on health effect estimates, Goldman et al. (2012) evaluated the

28  effect of different types of spatial averaging on bias in the health effect risk ratio and the effect of

29  correlation between measured and “true” ambient concentrations of PM; s and PM, and other air

30 pollutant measures. Concentrations were simulated at alternate monitoring locations using the

31  geostatistical approach described above (Goldman ¢t al., 2010) for the 20 county Atlanta metropolitan

32 area for comparison with measurements obtained directly from monitors at those sites.
33 Geostatistical-simulated concentrations were considered by the authors to be “true” in this study, and
34  other exposure assessment methods were assumed to have some error. Five different exposure assessment

35  approaches were tested: (1) using a single fixed-site ambient monitor, (2) averaging the simulated

I Note that 95% CIs were not reported for the ambient monitor RR or for the cases where temporal antocorrelation
was not considered.
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exposure concentrations across all monitoring sites, (3) performing a population-weighted average across
all monitoring sites, (4) performing an arca-weighted average across all monitoring sites, and
(5) population-weighted averaging of the geostatistical simulation (see Table 3-10). Goldman et al. (2012)

observed that the exposure error was somewhat correlated with both the measured and “true”™ values,
reflecting both Berkson and classical error components. For the single fixed-site ambient monitor, the
exposure errors had a moderate positive correlation with the measured value. For the other exposure
concentration estimation methods, the exposure errors were moderately negatively correlated with the
“true” value, while having positive but lower magnitude correlation with the measured value.
Additionally, the exposure bias, given by the ratio of the exposure error to the measured value, was higher
in magnitude at the single fixed-site monitor than for the spatial averaging techniques for PM- s. Hence,
compared with other exposure assessment methods, the health effect estimate would likely have greater
bias towards the null (i.c., underestimation of the true health effect estimate) with reduced precision when
a single fixed-site monitor is used to measure PM; 5 concentration as a surrogate for exposure. However,

exposure error is likely to cause some bias and imprecision for other exposure surrogate methods as well.

Table 3-10 The influence of exposure concentration metrics on error in health
effect estimates.

Exposure Estimation Approach Bias[{Z-Z*)}/Z]? RYZ, Z*)p° R[{(Z-2*}, Z*]° R[(Z-2%), Z}°
PMas
Fixed-site monitor 0.21 0.76 -0.10 0.41
Unweighted average 0.05 0.85 -0.28 0.14
Population-weighted average 0.05 0.84 -0.28 0.14
Area-weighted average 0.04 0.84 -0.29 0.13
Geostatistical model— N/A 0.87 -0.38 0.00065

population-weighted average

N/A = not applicable.
2Data provided by the authors for Figure 5 of Goldman et al. (2012).
®Data provided by the authors of Figure 4 of Goldman et al. (2012).
°Pearson correlation.

Note: Model errors were based on comparisons between measured data and simulated data at several monitoring sites. Errors
were estimated for a single fixed-site ambient monitor, various monitor averages, and values computed from a geostatistical
model. Z denotes the measured concentration, and Z* denotes the “true” concentration, considered here to be from the
geostatistical model. Bias in the exposure concentration metric is given as the proportion of error between the measurement and
true value to the measurement.

Source: Permission pending, Goldman et al. (2012).
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In addition to the effect of the correlations and ratios themselves, spatial variation in their values

across urban areas also impacts time-series epidemiologic results. The Goldman et al. (2010) and

Goldman et al. (2012) findings suggest more Berkson error in the spatially resolved exposure

concentration metrics compared with the fixed-site ambient monitor and more classical error for the
fixed-site ambient monitor estimate compared with the other exposure assessment techniques. Hence,
more bias would be anticipated for the health effect estimate calculated from the fixed-site ambient
monitor, and more variability would be expected for the health effect estimate calculated with the more
spatially resolved methods. Differences in the magnitude of exposure concentration estimates are not
likely to cause substantial bias, but they tend more to widen confidence intervals and thus reduce the

precision of the effect estimate (Zeger et al.. 2000). The more spatially variable air pollutants studied in

Goldman et al. (2012) also had more bias in the health effect estimates. This occurred across exposure

assessment methods but was more pronounced for the fixed-site ambient monitoring data. Note that the
Goldman et al. (2010}, Goldman et al. (2011}, and Goldman et al. (2012) studies were performed only in

Atlanta, GA. These simulation studies are informative, but similar simulation studies in additional cities

would aid generalization of these study results.

Dionisio et al. (2014) evaluated differences m PM. s effect estimates derived from ambient

monitors, an AERMOD air quality model to capture spatial variability, and a SHEDS personal exposure
model incorporating infiltration and time-activity patterns for ZIP codes in Atlanta. They found that
personal exposure model-based estimates were lower than ambient monitor and air quality model
estimates, which were relatively similar to one another. The study also evaluated attenuation of health
effect estimates in single-pollutant and copollutant models using a classical error attenuation factor
relating the observed health effect estimate and health effect estimate that was designated by the authors
to be “true”. In single-pollutant models, using a fixed-site monitor reduced the size of the health effect
estimate to about 80% of the effect estimate from the air quality model. The health effect estimate based
on the fixed-site monitor was much more attenuated to approximately 25% of the health effect estimate
when the personal exposure model was used for the exposure concentration estimate. The degree of
attenuation was slightly greater in copollutant models with SO4*" and Os, and slightly less in a copollutant
model with NOx. Due¢ to the more regional nature of PM, little spatial variability in the health effect
estimates and degree of attenuation was observed. The findings of this study also suggest that PM 1s not

as susceptible to spatially varying exposure error as locally-emitted pollutants such as CO and NOx.

To account for temporal variability in exposure, Dominici et al. (2004} used spline functions to

control for the temporal trend in exposure concentration and outcome in time-series studies. Szpiro et al.
(2014} compared a version of this method with an approach to pre-adjust the exposure to account for the
time trend, without need to account for the trend in the outcome, to reduce bias in the effect estimate. This
method is particularly applicable for repeated-measure cohort studies, since it takes advantage of the
additional exposure data available from more frequent pollutant measurements compared to the infrequent

outcome and covariate measures.
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Section 3.4.2 4 also describes the influence of instrument accuracy and precision on the
relationship between ambient PM concentrations and personal exposure to ambient PM. Exposure
measurement error related to instrument precision has a smaller effect on health effect estimates in
time-series studies compared with error related to spatial gradients in the concentration because
instrument precision would not be expected to modify the ability of the instruments to respond to changes

in concentration over time. Goldman et al. (2010) investigated the influence of instrument error on health
effect estimates in a time-series epidemiology study by studying differences in exposure concentration
estimates and health effect estimates obtained using collocated monitors. In this study, a random error
term based on observations from collocated monitors was added to an ambient monitor’s time series to
simulate population estimates for ambient air concentrations subject to instrument precision error in
1,000 Monte Carlo simulations. Virtually no change in the risk ratio was observed for 24-hour average
PM;s; the RR per ppm with simulated instrument precision error was 1.0138 compared with RR per
ppm = 1.0139 for the ambient monitor. The amount of bias in the health effect estimate related to

instrument precision was very small.

As described in the 2009 PM ISA (U.S. EPA, 2009b), nonambient sources of PM include indoor
combustion, cooking, cleaning, and other activities. However, such exposure is unlikely to be temporally

correlated with ambient PM exposure (Wilson and Suh. 1997), and therefore would not affect

epidemiologic associations between ambient PM and a health effect in a time-series study. In simulations
of a nonreactive pollutant, Sheppard et al. (2005) concluded that nonambient exposure does not influence

the health outcome effect estimate if ambient and nonambient concentrations are independent. Because
personal exposure to ambient PM is some fraction of the ambient concentration, it should be noted that
effect estimates calculated based on personal exposure rather than ambient concentration will be
positively biased in proportion to the ratio of ambient concentration to ambient exposure, and daily
fluctuations in this ratio can widen the confidence intervals in the ambient concentration effect estimate.
Uncorrelated nonambient exposure will not bias the effect estimate but may also widen the confidence
intervals (Sheppard ¢t al., 2005; Wilson and Suh, 1997).

3.45.1.2 Panel Studies

Panel or small-scale cohort studies involving dozens of individuals may use more individualized
concentration measurements, such as personal exposures, residential fixed-site indoor or outdoor
measurements, or concentration data from local study-specific monitors. Modeled concentrations are not
typically used as exposure surrogates in panel epidemiologic studies. Probabilistic, distribution-based
approaches are not designed to estimate exposures for specific individuals, such as might be needed for
panel epidemiologic studies. Another main disadvantage of the modeling approach is that the results of
modeling exposure assessment must be compared to an independent set of measured exposure levels

(Kiepeis, 1999). In addition, resource-intensive development of evaluated and representative model inputs
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1 isrequired, such as human activity patterns, distributions of air exchange rate, and deposition rate.

[\

Therefore, modeled exposures have been used much less frequently in panel epidemiologic studies.

Panel studies using hourly or other subdaily measurements are used to evaluate subclinical health
effects, such as biomarkers of inflammation [e.g., Bubowsky et al. (2006)]. Sensitivity to averaging time

may be tested by fitting models with various averaging times to identify the time period most associated
with effects. However, temporal variations in exposure and covariates (e.g., temperature, other pollutants)

can lead to temporal variability in exposure measurement error. Mallov et al. (2010) proposed a wavelet

approach to add time-varying data into the statistical model used in an epidemiologic study. Simulations

o8 1 N i e W

adding exposure measurement error to an hourly PM; s data set indicated that the fine-scale wavelets

10 describing shorter-frequency variation captured most of the exposure error, with little error accounted for
11 by the coarse wavelets. The standard moving average approach of fitting models with successively longer
12 averaging times showed the greatest exposure error at shorter averaging times (less than 20—60 hours),

13 while the effect of simulated error was similar across averaging times wavelet approach showed similar
14 error over averaging times of 10 hours or greater. This suggests that the wavelet approach may be better

15 able to identify associations with health effects over short averaging times (e.g., 24 hours or less).

16 To evaluate the effect of small-scale intraurban spatial variability on health effect estimates,
17 Sarmnat et al. (2012) considered the influence of local exposure concentration metrics on respiratory effect

18  estimates for a panel of school children. This study was conducted along the U.S.-Mexico border in El

19 Paso, TX and Ciudad Juarez, Mexico, and 48-hour average concentrations measured from fixed-site

20 ambient monitors, monitors outside the children’s schools, and monitors inside the children’s schools

21  were all used as surrogates for PM exposure concentration. For PMs s, slightly higher health effect

22 estimates were observed for indoor monitors compared with outdoor and fixed-site ambient monitors (2.7,
23 2.3, and 2.4%, respectively), although confidence intervals overlapped. PMio-- s had a higher health effect
24 estimate for indoor than outdoor monitors (2.8 vs. 2.0%), again with overlapping confidence intervals. No
25  fixed-site ambient PMio s data were available. For both PMs s and PMo s, multivariate models with

26  both indoor and outdoor concentration only showed associations for indoor concentration. This effect was
27 more pronounced for PMig 2 s, which exhibits greater urban spatial variability than PM» 5. The authors

28  suggested that exposure measurement error could result in biasing the health effect estimate toward the

29 null to underestimate the health effect, given the finding of higher health effect estimate for the outdoor
30 PMays monitor compared with the outdoor PMio-» s monitor.

3.4.5.2 Long-Term Exposure Cohort Studies

31 For cohort epidemiologic studies of long-term human exposure to PM, where the difference in the
32 magnitude of the concentration is of most interest, if C. is used as a surrogate for E,, then « can be
33 considered to encompass the exposure measurement error related to uncertainties in the time-activity data

34  and infiltration. Spatial variability in PM concentrations across the study area could lead to bias in the
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health effect estimate if C, is not representative of E.. This could occur if the study participants are
clustered in a location where their PM exposure is higher or lower than the exposure estimated ata
modeled or measurement site. There is limited information regarding whether C, is a biased exposure

S I

surrogate in the near-road environment for epidemiologic studies of long-term exposure.

Choice of exposure surrogate can influence error in the health effect estimate. For example,
Baxter et al. (2010} calculated bias and RMSE for health effect estimates based on different exposure

estimation methods including evaluated regression models, distance from a major road, and an indoor
exposure model that accounts for factors such as seasonality in infiltration of ambient PM2 s and EC. The

o8 -1 N

simulated indoor concentrations produced unbiased health effect estimates, while the other exposure

10 surrogates typically (but not always) biased the health effect estimate towards the null to underestimate
11 the true health effect and inflated the RMSE relative to that of the indoor model. Distance surrogates had
12 much larger biases and RMSE compared with models containing PM; 5 or EC concentration measures.

13 Kioumourtzoglou et al. (2014) developed linear mixed effects models to calibrate exposure surrogates

14 (fixed-site ambient monitor and monitor outside a residence) against what was considered by the authors
15 to be “true” personal exposure to ambient PM: 5, estimated by multiplying the fixed-site ambient PM: s

16 measurement by the ratio of personal to ambient SO4*. The calibration cocfficients indicated that the

17 fixed-site ambient monitor only captured 31% of the "true" personal exposure to ambient PMs s, and the
18  outdoor monitor captured 54% of the "true" personal exposure to ambient PM» 5. Hence, in both cases, the
19  exposure surrogate was lower than the sulfate-derived personal exposure.

20 Researchers have recently compared the choice of ground-based or satellite-based estimation

21 methods on epidemiologic effect estimates. Jerrett et al. (2016) compared several residential exposure

22 concentration estimation methods using ground-based data (i.c., monitor, meteorological, land use, or

23 spatial information) or satellite data for a large subset of the ACS cohort (668,629 individuals). The

24 authors found that although the various methods yielded similar median PM2 s exposure concentration

25  estimates (approximately 12 pg/m’®), effect estimates for circulatory mortality during 1982—-2004 were

26  much lower for the satellite methods than the ground-based methods. Of the seven methods tested, the

27  highest effect estimate was produced by a ground-data-only two-stage model consisting of LUR followed
28 by a BME kriging model of the residuals; this method also had the best model fit. This model produced a

29 relative risk (95% CI) of 1.14 (1.11-1.17) per 10 pg/m* PM, 5, while the lowest relative risk was observed
30 with one of the two satellite-only methods (RR =1.02, 95% CI = 1.00—1.04). Jerrett et al. (2016)

31  calculated the Akaike Information Criterion (AIC) to assess model fit and found a negative association

32 between HR and AIC (R? = 0.94), which suggests that use of the satellite method alone produced an

33 attenuated effect estimate. The LUR-BME method estimated exposure concentrations on a 30 x 30 m

34 (0.03 x 0.03 km) grid, while this satellite-only method provided estimates on a 1 x 1 km grid. The results

35 ofthe Jerrett et al. (2016) study suggest that exposure estimation methods incorporating locally available

36 ground data may introduce less exposure error than remote sensing methods alone, but that satellite

37  methods have the capability to identify associations when ground data are lacking.
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Spatial resolution of the exposure concentration estimates has been evaluated to examine the

influence of spatial exposure error in cohort studies. For example, Alexeeff et al. (2015) fit kriging and

LUR models based on 100 or 500 monitoring sites [derived from a satellite downscaling approach

concentration model used to compute health effect estimates for linear and logistic health effect
simulations. For the LUR models, which had the highest model R? (71 to 84%) compared with the
satellite-downscaling estimates, the effect estimates were biased away from the null to overestimate the
health effect estimate in all cases. Bias in the linear models was reduced from 4—5% for LUR fit with
100 monitors to 1% for the LUR fit with 500 monitors, and confidence interval coverage increased from
48 to 68%. Bias in the logistic models was reduced from 3—4% for LUR fit with 100 monitors to 2% for
LUR fit with 500 monitors, and confidence interval coverage increased from 91 to 94%. The kriging
models had much lower model R? (24-44%). One kriging model fit to long-term average monitor data
also produced bias away from the null to overestimate the health effect estimate that reduced with number
of monitors, but with larger magnitude biases. The other produced bias mostly towards the null to
underestimate the health effect estimate, with magnitude of bias increasing with increased number of

monitors.

Gryparis et al. (2009) noted that smoothing of the true exposure concentration surface can cause

Berkson error in the effect estimate. Gryparis et al. (2009) simulated three spatial surfaces of increasing

variability and then tested five types of exposure concentration modeling approaches: plug-in exposure
concentration estimation where the “true” exposure concentrations (as designated by the authors) are
predicted by a smoothing model; plug-in exposure concentration estimation with variance correction;
regression calibration using hold-out predictions, covariates, and observations; and two types of Bayesian
surface models (full Bayesian and two-stage Bayesian approaches) fitting a joint model for the health and
exposure concentration data. Simulation results produced negative biases to underestimate the health
effect for the plug-in exposure concentration estimation methods with and without variance correction,
and those biases became larger in magnitude with increasing spatial variability (for the plug-in method
with variance correction, simulation results produced —57% bias for the smoothest surface and —419%
bias in the most spatially variable surface). Likewise, the mean squared error (MSE) increased and
confidence interval coverage decreased with increasing variability of the "true" exposure concentration
surface. Biases and MSEs were much smaller in magnitude for the regression calibration and Bayesian
exposure concentration assignment methods, and those biases were positive and so overestimated the
health effect (maximum bias was 23% for the two-stage Baves method for the most spatially variable
exposure concentration surface). MSE for the regression calibration and Bayesian methods also increased
with increasing variability of the *“true” exposure concentration surface. Regression methods have also
been applied to correct ambient monitor data or spatial modeling estimates of PM» s exposure based on

indoor SO4* to ambient PM, 5 ratios in studies all-cause mortality (Hart et al., 2015a) and lung cancer

(Hart et al., 2015b). In cach study, the health effect estimate was lower when no exposure error correction

method was applied. This implies that the smoother, non-corrected method introduced error into the
exposure estimate that resulted in negative bias to underestimate the health effect.
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The greater spatial characterization of PM; s exposure concentration estimates from a combined
satellite-LUR method with 50 m resolution developed by Kloog et al. (2011} resulted in higher mortality
effect estimates compared with cohort studics using city-wide concentrations for the entire population

based on a 10 km resolution grid (Kloog et al.. 2013). This is consistent with a reanalysis of the ACS

cohort conducted by Willis et al. (2003). which found that a subset analysis including only individuals

living in a county with a sulfate monitor yielded an all-cause mortality effect estimate twice that for the
entire cohort (1.5 vs. 1.25). The Kloog et al. (2013) study also found an effect of monitor distance, with a

higher effect estimate for the population living within 20 km of a monitor than for those living farther

NoRie T B R T IS S O R

away. This spatial influence on epidemiologic effect estimates is consistent with the null bias resulting

—
<

from classical error.

11 The influence of spatial exposure error on health effect estimates varies with the study
12 parameters, such as exposure model selection and location. Wu et al. (2011) compared health effect

13 estimates for birth outcomes from four hospitals in Los Angeles and Orange Counties, CA given PMa s

14  concentrations as estimated using nearest monitors and the CALINE4 dispersion model. For

15 preeclampsia, crude and adjusted odds ratios were consistently lower when the nearest monitor was used
16  to estimate exposure concentration instead of the more spatially resolved dispersion model. Differences in
17 the odds ratio for the two exposure concentration estimation methods were larger for Los Angeles County
18  compared with Orange County. For Los Angeles County, the odds ratios were also below one when the
19  nearest monitor was used, in contrast with Orange County, where the odds ratios were both above one.

20 However, for preterm (<37 weeks gestation) and very preterm births (<30 weeks gestation), odds ratios
21 were lower for the nearest monitor exposure concentration estimation method compared with the

22 dispersion model in Los Angeles, but in Orange County, the opposite was observed. These findings

23 indicate that higher spatial resolution may improve estimation of health effects.

24 Exposure error in studies of long-term exposure has the potential to be larger for PMa s
25  components than for PM» s mass concentration, since the spatial vanability of PMs s components tends to
26  be greater than for PM» s mass concentration (Sun et al , 2013). Within components, the reported

27  concentrations were also sensitive to the methods of measurement, with nearest monitor typically
28  producing greater relative variability (measured as IQR/median) compared with IDW and city-wide

29  average concentrations, respectively. Sun et al. (2013) compared statistical models of cardiovascular

30 disease biomarkers associated with long-term exposure to PM: s mass, EC, OC, Si, and S concentration

31  using the nearest monitor, IDW, and city-wide average metrics. In general, effect estimates with city-wide
32 averages tended to be lower in magnitude compared with the nearest monitor or IDW approaches for both
33 the PM,s mass and component metrics for one biomarker (CIMT) and for another biomarker (CAC) only

34 for the 81 component. Using finer-scale concentration estimates to approach the same problem, Kim et al,

35 (2014) observed CIMT effects for Si but not EC. Little bias with PM; s mass or S (as an indicator of

36 SO4%7) concentration suggests that the less spatially variable metrics are less subject to bias related to

37 exposure measurcment error.
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When a spatial concentration model, such as LUR or a spatiotemporal model, is used to develop a
set of exposure concentration estimates for input into a long-term exposure epidemiologic study,
minimizing error in the exposure or exposure concentration estimate does not always minimize error in

the health effect estimate (i.c., B). Szpiro et al, (201 1a) used simulation studies to evaluate the bias and

uncertainty of the health effect estimate obtained when using correctly specified and misspecified
exposure concentration models. The correct exposure concentration model was a spatiotemporal model
with three geographic covariates while the misspecified model included only two of these three
geographic covariates. In practice, covariates in spatiotemporal models may include variables such as
population within a given buffer, proximity to industrial sources or highways, or building density. Szpiro
objective was to explore the impact of removing from the model a geographic covariate that may
influence the exposure concentration. They estimated the exposure concentration model parameters using
monitor data and predicted exposure concentrations at subject locations. They studied two conditions:
where the variation in the third covariate was identical in the monitor and subject data versus where it was
much smaller in the monitor data than in the subject data. Szpiro et al. (2011a) showed that prediction

accuracy of the exposure concentration estimate was always higher for the correctly specified model
compared with the misspecified model. The health effect estimate had better properties (lower RMSE) for
the correct model when the third covariate had identical variability in the monitor and subject data.
However, when the third covariate was much less variable in the monitor data, then the health effect
estimate had better properties for the misspecified model. The results of Szpiro et al. (2011a) demonstrate

ong situation where use of a more accurately defined exposure concentration metric does not improve the
health effect estimate.

Another simulation study evaluating the influence of exposure estimation methods on bias in
health effect estimates considered the joint effect of exposure measurement error and confounding
(Cefalu and Dominici, 2014). Exposure measurement error due to spatial variability in ambient

concentrations or land use variables is often accounted for by exposure prediction models, such as LUR.
Health effect models then may adjust for some of these same covariates as a means of reducing

confounding of the effect estimate. Cefalu and Dominici (2014) demonstrated that if covariates are

included in the exposure prediction model, but not the health effect model, the magnitude of bias in the
health effect estimate is always increased relative to the simulated “true” exposure (as designated by the
authors). The bias may be in either direction, depending on which covariates are omitted. To eliminate
this bias, all potential confounders included in the health model must be included in the exposure
prediction model, unless they are uncorrelated with exposure. Their simulation compared models with
increasing numbers of covariates, and they found that in some situations the bias increased despite an
increase in R?, a similar result to the Szpiro et al. (2011a) study in which an improved exposure

concentration metric did not improve the health effect estimate. One difficulty in applying these results to
interpret epidemiologic study results is the uncertainty regarding the proper set of confounders to be

included in the exposure and health models. While the Szpiro et al. (2011a) and Cefalu and Dominici
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1 Preferential sampling may occur when the exposure concentration model is fit to a set of spatial
2 data, and exposures at other locations in the domain are not well represented. Sheppard et al. (2012)
3 performed a series of simulations to study successively greater spatial correlations between monitors and
4  study participants using kriging and nearest monitor to estimate PM; 5 exposure concentration. Bias
5  between the health effect estimate of the “true” exposure concentration (as designated by the authors) was
6  compared with that derived from the kriged or nearest monitor exposure concentration estimates.
7  Sheppard et al. (2012) found that bias decreased as spatial correlation between the "true" exposure
8  concentration and the modeled exposure concentration increased. Both the kriging and nearest monitor
9  exposure concentration models caused the coverage of the 95% confidence interval to be underestimated,
10 but the underestimation was greater for nearest monitor. Furthermore, underestimation of the confidence
11  interval became smaller with increasing spatial dependence of the “true” and modeled exposure
12 concentrations. These results suggest that correlation between the “true” and modeled exposure reduces
13 bias in the health effect estimate and reduces underestimation of variability in the health effect estimate.
14  Lee et al (2015) simulated several scenarios in which spatial variability explained successively larger
15 portions of the exposure concentration variability to test for the effect of preferential sampling. Lee et al.
16  (2013) also compared geospatial models of PM» s components EC and S fit with the national network
17 (urban and rural), CSN (urban), and IMPROVE (rural) networks and found large differences in the
18  modeled exposure concentration surface. These results support the point that the nature of the monitors is
19  important in deriving the surface. In general, Lee et al. (2015) found that the more preferential sampling
20 occurred, the larger the relative bias and standard error of the effect estimate. In practice, studies of LUR
21 have shown that fitting a model in one city and then applying it to another city can lead to large errors
22 (U.S. EPA, 2016). The results of Lee et al. (2015) would imply that this practice would add error to the
23 effect estimate.
24 Error correction is a relatively new approach to estimate the correct the classical-like standard

25 error of exposure estimates and potentially to correct for bias in the exposure estimates used in statistical
26 models for longitudinal cohort studies (5zpiro et al.. 2011b). Szpiro and Paciorek (2013) and Bergen and
27 Szpiro (2015) established that two conditions must hold for the health effect estimate to be predicted

28  correctly: the exposure concentration estimates from monitors must come from the same underlying
29  distribution as the true exposure concentrations, and the health effect model adjusts for confounding in the

30 population. Szpiro and Paciorek (2013) performed several simulations to investigate what happens when

31  these conditions are violated. In one set of simulations, the distribution of the exposure concentration was
32 varied. When the assigned exposure concentration measurements were set to be uniform across space, the
33 health effect estimate was biased away from the null (i.¢., overestimated the health effect) with different
34 standard error compared with the case when the exposure subjects were collocated with the study

35  participants. When the model was misspecified, the health effect estimate was biased towards the null

36 (i.e., underestimated the health effect) with different standard errors compared with the correctly specified
37  model. Bias correction and bootstrap calculation of the standard errors improved the model prediction,

38  even when the “true” model (as designated by the authors) contained several degrees of freedom.

39 Spiegelman (2013) noted that the new measurement error correction methods developed by Szpiro and
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Paciorek (2013) are a version of regression calibration. Bergen et al. (2013) applied error correction to

models of long-term exposure to PM, s components (EC, OC, Si, and S). They found that exposure errors
in the EC and OC models were almost pure Berkson errors, so that the bootstrap calculation of the
standard errors did not improve the estimates. Si and S were influenced by Berkson-like error, and
bootstrap simulation of the standard errors was used for error correction. Absence of notable bias supports

N W e W N e

the observation of negligible classical-like error in the Si and S exposure concentration estimates.

~J

In the case of long-term exposure cohort studies, nonambient contributions to the total personal
exposure measurements would be expected to widen the confidence interval around the health effect
9  estimates by adding noise to the exposure signal. Also, addition of any non-negative nonambient
10 component to the personal exposure measurement would result in an underestimate of exposure to
11 ambient PM, because the average total personal PM exposure would have to be either equal to or greater
12 than the average personal exposure to ambient PM. This exposure error could bias the health effect

13 estimate towards the null to underestimate the true health effect.

3.5 Summary

14 The exposure assessment chapter in the 2009 PM ISA (U.5. EPA, 2009b) synthesized a plethora
15 of new rescarch on PM, most of which focused on PM,s. The exposure assessment chapter in the 2009
16  PM ISA found that PMo s tended to be more spatially variable than PM, s at microscale, neighborhood

17 scale, and urban scale, because PM1o-2 5 was more sensitive to local sources and loss processes, such as

18  gravitational setting. UFP was also noted to be more spatially variable due to growth processes, but fewer
19 data were available. Secondary production of PM; s was noted to contribute to the relatively lower

20 heterogeneity in its spatial concentration distribution. Similarly, infiltration was found to vary with

21  particle size fraction, with the greatest infiltration factors occurring for PM, 5 and infiltration decreasing
22 with increasing particle size, due to surface impaction of PMi, 2 s during the infiltration process. Source
23 apportionment studies for SO4*", as a marker of ambient PM, 5, were presented as a method for

24 distinguishing personal exposure to ambient PM; 5 from total PMs 5 exposure. Other components, such as
25 EC and OC, were found not useful for apportionment of ambient PM; s exposure, given their indoor

26  sources. Spatial variability in PM concentration was noted to add uncertainty to exposure estimates.

27 Errors and uncertainties in the exposure assessment methods can add bias and uncertainty to

28  health effect estimates from epidemiologic studies on the health effects of PM exposure. With regard to
29  use of exposure swirogates in epidemiologic studies, the 2009 PM ISA (U.S. EPA. 2009b) noted that
30  separating total PM exposure into ambient and nonambient components reduces uncertainty in health

31  effects estimates. The 2009 PM ISA also noted that time-series studies of short-term PM: 5 exposure

32 generally use concentration data from fixed-site monitors as surrogates for exposure concentration, based
33 on the assumption that temporal variability is captured at the monitor. Panel studies utilizing personal

34 PM;;s exposure measurements found associations between short-term ambient PMa s exposure and health
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effects, and those findings were strengthened by focusing on the ambient component of exposure. It was
noted that long-term PM, s exposure studies produced health effects estimates that were most accurate
when the PM concentration distribution does not vary substantially in space. Findings from the recent

literature build from these results.

Fixed-site monitoring is still frequently utilized for exposure concentration surrogates for PM» s
(Section 3.3.1.1). Fixed-site monitoring data for PM o2 s must be used with more caution. Generally,
dichotomous samplers produce the most reliable measurements of PMio-2 s for use in exposure studies.
Collocated PM o and PM; s monitors used to calculate PMjo-2 s concentration by difference can have
higher errors and uncertainties due to differences in flow rates for the two instruments, while differences
between PMio and PM; s taken over a county or city to estimate PMio-2 s concentration has higher errors
and uncertainties. CPCs are most commonly used to measure UFP. Some poition of the UFP size
distribution may be omitted when using CPCs, since they do not typically measure particles smaller than

10 nm.

Substantial advances to exposure modeling have been made in recent years (Section 3.3.2).
Spatial mterpolation methods, LUR, dispersion models, and CTMs were already commonly used to
estimate PM s exposure concentration. Improvements in modeling the OC component of PM» s have
improved the accuracy of CTMs in recent years. Additionally, hybrid approaches drawing input from
CTMs, satellite observations of AOD, surface measurements of PM concentration, and land use variables
data have been combined into spatiotemporal models. Microenvironmental exposure models have also
been applied with input concentrations from these methods for comparison in epidemiology studies. The
majority of studies using these methods are applied to model PM: 5. These methods are emploved less
frequently to estimate PM1o2 s and UFP exposure concentration, related in part to less availability of input

data. Epidemiologic study design influences selection of exposure concentration estimation methods.

Copollutant confounding of the PM health effect estimate may occur if exposure to the
copollutants and their relationships to the health effect of interest are both correlated with PM exposure
and O3 during 2013—-2015 were as high as Pearson R = 0.5, and upper correlations reached near 1.
Copollutant correlation varied with season (highest for Os in summer and for CO and NO; in winter).
Median correlations of 24-hour ambient PMio-2 5 concentrations during the same time period were as high
as Pearson £ = 0.4, and upper correlations typically below Pearson R = 0.7-0.8. Median correlations
between PMa s and PMio 2 s range between 0.2 and 0.5, with higher values in summer and fall. Correlation
data for UFP were very limited, but they indicate correlations as high as Pearson R = 0.5 for NO; and
NOx, which are also traffic-related pollutants. Moderate-to-strong correlations may introduce a greater
degree of confounding into epidemiclogic study results, depending on the relationship between the
copollutants and the health effect of interest.

Ambient PM data from fixed-site monitors continue to be commonly used in health studies as a

surrogate for PM exposure concentration (Section 3.3.1.1). Advantages to using fixed-site monitoring
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data are that they provide a long-term record of concentration trends and they undergo rigorous quality
assurance if FRMs or FEMs are used. The concentration profile of PMa s tends to be less variable across
the urban or neighborhood scale compared with PMo-2 5 or UFP. Therefore, ambient PM: 5 concentrations

estimated at fixed-site monitors often provide a reasonable representation of exposure concentrations

2). However, the higher degree of spatial variability in ambient
PMio-» 5 and UFP across an urban arca may not be captured by a fixed-site monitor. Uncharacterized
variability in a time-series of exposure concentrations across space, resulting from use of fixed-site
monitoring data, in a time-series study of PMio-2 5 or UFP exposure may attenuate health effect estimates,
so that the health effect estimate underestimates the true health effect (Section 3.4.5.1). Bias may occur in
cither direction for long-term exposure studies, depending on whether the fixed-site monitor is over- or
underestimating ambient PMio-2 5 or UFP exposure concentration for the population of interest

(Section 3.4.5.2). In all study types, use of fixed-site monitoring ambient PMis»s or UFP concentrations
in lieu of the true exposure is expected to widen confidence intervals beyond what would be obtained if
the true exposure were used. Personal monitors directly measure PM exposure, but they produce a
relatively limited data set, making them most suitable for panel epidemiologic studies (Section 3.4.5.1.2).

Without accompanying time-activity data, ambient PM exposure cannot be distinguished from personal

When spatial variability of exposure concentration surfaces is not accurately modeled, the health
effect estimate tends to be biased towards the null with decreased probability that the confidence intervals
contain the true health effect. Bias towards the null means that the health effect estimate is
underestimating the true health effect. This is particularly true when the actual spatial variability is much
higher than what is represented by the model (Section 3.4.5.2). Hybrid models typically have good
cross-validation, especially for PM, s, and have the potential to reduce exposure measurement eiror and
resulting bias and uncertainty in health effect estimates produced by epidemiologic models of long-term
exposure to PM, even for spatially-varying size fractions and components. Bias correction and bootstrap
calculation of standard errors have also been shown to improve health effect estimate prediction from
spatiotemporal models when the exposure estimates have a classical-like error structure. When the
exposure estimates have a Berkson-like error structure, health effect estimates would only be expected to
improve when model covariates are chosen so that the statistical distribution of the modeled exposure

concentrations is close to the distribution of the true exposure concentrations.

In summary, exposure error tends to produce underestimation of health effects in epidemiologic
studies of PM exposure, although bias in either direction can occur. New developments in PM exposure
assessment, including hybrid spatiotemporal models that incorporate satellite observations of AOD, land
use variables, surface monitoring data from FRMs, and/or CTMs, have led to improvements in spatial
resolution of the PM: 5 concentration surface. These advancements have reduced bias and uncertainty in
health effects estimates. However, high correlations with some gaseous copollutants necessitate
evaluation of the impact of confounding on health effects estimates, using two-pollutant models to
ascertain robustness of epidemiologic study results. PMio-2 5 and UFP concentrations are typically more
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spatially variable than PM> s concentrations, and concentration data for those size fractions are less
frequently available as model input or for use in validating hybrid models. As a result, there is typically
less uncertainty in health effect estimates derived from both monitored and modeled exposure estimates
for PM» s compared with PMio» s and UFP.
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